pep2-SVKE

Inactive control peptide for pep2-SVKI CAS# 1315378-76-7

pep2-SVKE

Catalog No. BCC5785----Order now to get a substantial discount!

Product Name & Size Price Stock
pep2-SVKE:2mg $330.00 In stock
pep2-SVKE:4mg $561.00 In stock
pep2-SVKE:10mg $1320.00 In stock
pep2-SVKE:20mg $2310.00 In stock
Related Products

Quality Control of pep2-SVKE

Number of papers citing our products

Chemical structure

pep2-SVKE

3D structure

Chemical Properties of pep2-SVKE

Cas No. 1315378-76-7 SDF Download SDF
PubChem ID 90479808 Appearance Powder
Formula C59H89N13O20 M.Wt 1300.43
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble to 1 mg/ml in 67% acetic acid
Sequence YNVYGIESVKE
Chemical Name (2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-4-oxobutanoyl]amino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]acetyl]amino]-3-methylpentanoyl]amino]-4-carboxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-methylbutanoyl]amino]hexanoyl]amino]pentanedioic acid
SMILES CCC(C)C(C(=O)NC(CCC(=O)O)C(=O)NC(CO)C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CCC(=O)O)C(=O)O)NC(=O)CNC(=O)C(CC1=CC=C(C=C1)O)NC(=O)C(C(C)C)NC(=O)C(CC(=O)N)NC(=O)C(CC2=CC=C(C=C2)O)N
Standard InChIKey AHURAWWDQDDHNP-OIKDQGPWSA-N
Standard InChI InChI=1S/C59H89N13O20/c1-7-31(6)49(58(90)65-38(19-21-45(78)79)53(85)69-42(28-73)55(87)72-47(29(2)3)56(88)64-37(10-8-9-23-60)52(84)66-39(59(91)92)20-22-46(80)81)70-44(77)27-63-51(83)40(25-33-13-17-35(75)18-14-33)68-57(89)48(30(4)5)71-54(86)41(26-43(62)76)67-50(82)36(61)24-32-11-15-34(74)16-12-32/h11-18,29-31,36-42,47-49,73-75H,7-10,19-28,60-61H2,1-6H3,(H2,62,76)(H,63,83)(H,64,88)(H,65,90)(H,66,84)(H,67,82)(H,68,89)(H,69,85)(H,70,77)(H,71,86)(H,72,87)(H,78,79)(H,80,81)(H,91,92)/t31-,36-,37-,38-,39-,40-,41-,42-,47-,48-,49-/m0/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of pep2-SVKE

DescriptionInactive control peptide analog of pep2-SVKI, an inhibitor peptide corresponding to last 10 amino acids of the C-terminus of the GluR2 AMPA receptor subunit.

pep2-SVKE Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

pep2-SVKE Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on pep2-SVKE

Nicotinic receptors modulate the function of presynaptic AMPA receptors on glutamatergic nerve terminals in the trigeminal caudal nucleus.[Pubmed:26277383]

Neurochem Int. 2015 Nov;90:166-72.

In this study, we demonstrate the existence on trigeminal caudal nucleus (TCN) glutamatergic terminals of alpha4beta2 nicotinic receptors (nAChRs) capable of enhancing the terminals' spontaneous release of [(3)H]d-aspartate ([(3)H]D-Asp). In rat TCN synaptosomes, spontaneous [(3)H]D-Asp release was increased by nicotine and the nicotinic receptor agonists (+/-)epibatidine and RJR2403. The increase was potentiated by the positive allosteric modulator of nAChRs LY2087101, inhibited by the nicotinic antagonists mecamylamine (MEC) and dihydro-beta-erythroidine hydrobromide (DHbetaE), and unaffected by alpha-bungarotoxin (alpha-BgTx) and methyllycaconitine (MLA). Evidence of functional interaction was observed between the alpha4beta2 nAChRs and cyclothiazide-sensitive, alfa-amino-3-hydroxy-5-methyl-4-isoxazolone propionate (AMPA) receptors co-localized on the TCN synaptosomes. Brief pre-exposure of synaptosomes to 30 muM nicotine or 10 muM RJR2403 abolished the AMPA (100 muM) -induced potentiation of [K(+)]e-evoked [(3)H]D-Asp release, an effect that seems to be caused by nicotine-induced increases in the internalization of AMPA receptors. Indeed, the effects of nicotine-pretreatment were not seen in synaptosomes containing pre-entrapped pep2-SVKI, a peptide known to compete for the binding of GluA2 subunit to scaffolding proteins involved in AMPA endocytosis, while entrapment of pep2-SVKE, an inactive peptide used as negative control, was inefficacious. These findings show that nicotine can negatively modulate the function of AMPA receptors present on glutamatergic nerve terminals in the rat TCN. Dynamic control of AMPA receptors by the nicotinic cholinergic system has been observed under other experimental conditions, and it can contribute to the control of synaptic plasticity such as long-term depression and potentiation. Nicotine's ability to reduce the functionality of presynaptic AMPA receptors could contribute to its analgesic effects by diminishing glutamatergic transmission from the primary afferent terminals that convey nociceptive input to TCN.

In vitro exposure to nicotine induces endocytosis of presynaptic AMPA receptors modulating dopamine release in rat nucleus accumbens nerve terminals.[Pubmed:22771975]

Neuropharmacology. 2012 Oct;63(5):916-26.

Here we provide functional and immunocytochemical evidence supporting the presence on Nucleus Accumbens (NAc) dopaminergic terminals of cyclothiazide-sensitive, alfa-amino-3-hydroxy-5-methyl-4-isoxazolone propionate (AMPA) receptors, which activation causes Ca(2)(+)-dependent [(3)H]dopamine ([(3)H]DA) exocytosis. These AMPA receptors cross-talk with co-localized nicotinic receptors (nAChRs), as suggested by the finding that in vitro short-term pre-exposure of synaptosomes to 30 muM nicotine caused a significant reduction of both the 30 muM nicotine and the 100 muM AMPA-evoked [(3)H]DA overflow. Entrapping pep2-SVKI, a peptide known to compete for the binding of GluA2 subunit to scaffolding proteins involved in AMPA receptor endocytosis, in NAC synaptosomes prevented the nicotine-induced reduction of AMPA-mediated [(3)H]DA exocytosis, while pep2-SVKE, used as negative control, was inefficacious. Immunocytochemical studies showed that a significant percentage of NAc terminals were dopaminergic and that most of these terminals also posses GluA2 receptor subunits. Western blot analysis of GluA2 immunoreactivity showed that presynaptic GluA2 proteins in NAc terminals were reduced in nicotine-pretreated synaptosomes when compared to the control. The nACh-AMPA receptor-receptor interaction was not limited to dopaminergic terminals since nicotine pre-exposure also affected the presynaptic AMPA receptors controlling hippocampal noradrenaline release, but not the presynaptic AMPA receptors controlling GABA and acetylcholine release. These observations could be relevant to the comprehension of the molecular mechanisms at the basis of nicotine rewarding.

Functional roles of protein interactions with AMPA and kainate receptors.[Pubmed:12941441]

Neurosci Res. 2003 Sep;47(1):3-15.

The glutamate receptor subtypes AMPA and kainate are involved in synaptic transmission and synaptic plasticity in the CNS. Recently there has been considerable interest in understanding the molecular regulation of these receptors by proteins that directly bind to AMPA and kainate receptor subunits. Amongst the first interaction partners to be discovered were NSF, ABP, GRIP and PICK1, which bind the AMPA receptor subunit GLUA2. We have studied the functional roles of the interactions of these proteins in regulating AMPA receptor-mediated synaptic transmission and synaptic plasticity in the hippocampus. We have also started to investigate the functions of PICK1 and GRIP on kainate receptor-mediated synaptic transmission in this region. In this article we reflect upon this work, which has led to some new ideas about how AMPA and kainate receptors are regulated at synapses.

Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression.[Pubmed:11573007]

Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11725-30.

The interaction of PDZ domain-containing proteins with the C termini of alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) receptors has been suggested to be important in the regulation of receptor targeting to excitatory synapses. Recent studies have shown that the rapid internalization of AMPA receptors at synapses may mediate, at least in part, the expression of long-term depression (LTD). We have previously shown that phosphorylation of Ser-880 on the AMPA receptor GluR2 subunit differentially regulated the interaction of GluR2 with the PDZ domain-containing proteins GRIP1 and PICK1. Here, we show that induction of LTD in hippocampal slices increases phosphorylation of Ser-880 within the GluR2 C-terminal PDZ ligand, suggesting that the modulation of GluR2 interaction with GRIP1 and PICK1 may regulate AMPA receptor internalization during LTD. Moreover, postsynaptic intracellular perfusion of GluR2 C-terminal peptides that disrupt GluR2 interaction with PICK1 inhibit the expression of hippocampal LTD. These results suggest that the interaction of GluR2 with PICK1 may play a regulatory role in the expression of LTD in the hippocampus.

PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses.[Pubmed:11163273]

Neuron. 2000 Dec;28(3):873-86.

We investigated the role of PDZ proteins (GRIP, ABP, and PICK1) interacting with the C-terminal GluR2 by infusing a ct-GluR2 peptide ("pep2-SVKI") into CA1 pyramidal neurons in hippocampal slices using whole-cell recordings. Pep2-SVKI, but not a control or PICK1 selective peptide, caused AMPAR-mediated EPSC amplitude to increase in approximately one-third of control neurons and in most neurons following the prior induction of LTD. Pep2-SVKI also blocked LTD; however, this occurred in all neurons. A PKC inhibitor prevented these effects of pep2-SVKI on synaptic transmission and LTD. We propose a model in which the maintenance of LTD involves the binding of AMPARs to PDZ proteins to prevent their reinsertion. We also present evidence that PKC regulates AMPAR reinsertion during dedepression.

AMPA receptor-PDZ interactions in facilitation of spinal sensory synapses.[Pubmed:10526335]

Nat Neurosci. 1999 Nov;2(11):972-7.

Silent synapses form between some primary sensory afferents and dorsal horn neurons in the spinal cord. Molecular mechanisms for activation or conversion of silent synapses to conducting synapses are unknown. Serotonin can trigger activation of silent synapses in dorsal horn neurons by recruiting AMPA receptors. AMPA-receptor subunits GluR2 and GluR3 interact via their cytoplasmic C termini with PDZ-domain-containing proteins such as GRIP (glutamate receptor interacting protein), but the functional significance of these interactions is unclear. Here we demonstrate that protein interactions involving the GluR2/3 C terminus are important for serotonin-induced activation of silent synapses in the spinal cord. Furthermore, PKC is a necessary and sufficient trigger for this activation. These results implicate AMPA receptor-PDZ interactions in mechanisms underlying sensory synaptic potentiation and provide insights into the pathogenesis of chronic pain.

Keywords:

pep2-SVKE,1315378-76-7,Natural Products,AMPAR, buy pep2-SVKE , pep2-SVKE supplier , purchase pep2-SVKE , pep2-SVKE cost , pep2-SVKE manufacturer , order pep2-SVKE , high purity pep2-SVKE

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: