Ghrelin (rat)

Endogenous ghrelin receptor agonist CAS# 258338-12-4

Ghrelin (rat)

Catalog No. BCC5767----Order now to get a substantial discount!

Product Name & Size Price Stock
Ghrelin (rat):1mg $463.00 In stock
Ghrelin (rat):2mg $787.00 In stock
Ghrelin (rat):5mg $1852.00 In stock
Ghrelin (rat):10mg $3241.00 In stock
Related Products

Quality Control of Ghrelin (rat)

Number of papers citing our products

Chemical structure

Ghrelin (rat)

3D structure

Chemical Properties of Ghrelin (rat)

Cas No. 258338-12-4 SDF Download SDF
PubChem ID 44134734 Appearance Powder
Formula C147H245N45O42 M.Wt 3314.83
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble to 1 mg/ml in water
Sequence GSSFLSPEHQKAQQRKESKKPPAKLQPR

(Modifications: Ser-3 = Ser(n-octanoyl))

Chemical Name 4-[[1-[2-[[2-[[2-[[2-[[2-[(2-aminoacetyl)amino]-3-hydroxypropanoyl]-octanoylamino]-3-hydroxypropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxypropanoyl]pyrrolidine-2-carbonyl]amino]-5-[[1-[[5-amino-1-[[6-amino-1-[[1-[[5-amino-1-[[5-amino-1-[[1-[[6-amino-1-[[1-[[1-[[6-amino-1-[[6-amino-1-[2-[2-[[1-[[6-amino-1-[[1-[[5-amino-1-[2-[(4-carbamimidamido-1-carboxybutyl)carbamoyl]pyrrolidin-1-yl]-1,5-dioxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]carbamoyl]pyrrolidine-1-carbonyl]pyrrolidin-1-yl]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
SMILES CCCCCCCC(=O)N(C(CO)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CC(C)C)C(=O)NC(CO)C(=O)N2CCCC2C(=O)NC(CCC(=O)O)C(=O)NC(CC3=CNC=N3)C(=O)NC(CCC(=O)N)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NC(CCC(=O)N)C(=O)NC(CCC(=O)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CCC(=O)O)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)N4CCCC4C(=O)N5CCCC5C(=O)NC(C)C(=O)NC(CCCCN)C(=O)NC(CC(C)C)C(=O)NC(CCC(=O)N)C(=O)N6CCCC6C(=O)NC(CCCNC(=N)N)C(=O)O)C(=O)C(CO)NC(=O)CN
Standard InChIKey YQVMHOLUYGAYNG-UHFFFAOYSA-N
Standard InChI InChI=1S/C147H245N45O42/c1-8-9-10-11-15-45-116(202)192(143(231)105(77-195)168-115(201)73-153)110(78-196)139(227)185-101(71-84-32-13-12-14-33-84)133(221)183-100(70-81(4)5)132(220)187-104(76-194)142(230)189-66-29-42-107(189)137(225)178-95(51-57-118(205)206)129(217)184-102(72-85-74-162-79-165-85)134(222)177-93(48-54-113(156)199)128(216)171-86(34-16-21-58-148)121(209)166-82(6)119(207)170-91(46-52-111(154)197)126(214)175-92(47-53-112(155)198)127(215)173-90(39-26-63-163-146(158)159)123(211)172-88(36-18-23-60-150)122(210)176-94(50-56-117(203)204)130(218)186-103(75-193)135(223)174-89(37-19-24-61-151)124(212)179-96(38-20-25-62-152)140(228)191-68-31-44-109(191)144(232)190-67-30-41-106(190)136(224)167-83(7)120(208)169-87(35-17-22-59-149)125(213)182-99(69-80(2)3)131(219)180-97(49-55-114(157)200)141(229)188-65-28-43-108(188)138(226)181-98(145(233)234)40-27-64-164-147(160)161/h12-14,32-33,74,79-83,86-110,193-196H,8-11,15-31,34-73,75-78,148-153H2,1-7H3,(H2,154,197)(H2,155,198)(H2,156,199)(H2,157,200)(H,162,165)(H,166,209)(H,167,224)(H,168,201)(H,169,208)(H,170,207)(H,171,216)(H,172,211)(H,173,215)(H,174,223)(H,175,214)(H,176,210)(H,177,222)(H,178,225)(H,179,212)(H,180,219)(H,181,226)(H,182,213)(H,183,221)(H,184,217)(H,185,227)(H,186,218)(H,187,220)(H,203,204)(H,205,206)(H,233,234)(H4,158,159,163)(H4,160,161,164)
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Biological Activity of Ghrelin (rat)

DescriptionEndogenous agonist peptide for the ghrelin receptor (GHS-R1a). Produced mainly by the stomach, it stimulates release of growth hormone from the pituitary gland in vitro and in vivo, and regulates feeding, growth and energy production.

Ghrelin (rat) Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Ghrelin (rat) Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Ghrelin (rat)

Comparison of Weight Loss, Ghrelin, and Leptin Hormones After Ligation of Left Gastric Artery and Sleeve Gastrectomy in a Rat Model.[Pubmed:28339424]

Med Sci Monit. 2017 Mar 24;23:1442-1447.

BACKGROUND Ligation of the left gastric artery (LLGA), which supplies the fundus of the stomach, may reduce the appetite hormone ghrelin, resulting in weight control. The aim of this study was to compare LLGA and sleeve gastrectomy (SG) in terms of postoperative outcomes in a rat model. MATERIAL AND METHODS Fifteen male Wistar albino rats, weighing >350 grams (range 350-525 grams), were enrolled in LLGA (N=5), SG (N=5), and control (N=5) groups. Blood samples were drawn preoperatively and also during the first and fourth week postoperatively to assay ghrelin and leptin hormone levels. Body weight was measured in each group. RESULTS The maximum reduction in ghrelin level (41.5%) was found in the LLGA group. Considerable% total weight loss (TWL) (mean 24.1%) was observed in the SG group, and slight%TWL was noted in the control and LLGA groups (means of 0.1% and 2.1%, respectively). There was no significant difference in mean percent weight change between the LLGA and the SG groups (p=0.08). Blood sample analysis revealed no statistically significant changes in ghrelin or leptin levels between the groups (p=0.9 and p=0.3, respectively). CONCLUSIONS We present evidence that LLGA causes the same reduction in ghrelin hormone levels as SG at 4 weeks after surgery in a rat model. However, LLGA did not cause the same%TWL as SG. The mechanism of weight loss in SG is most likely due to restriction and to the effects of the procedure, rather than due to neurohormonal changes.

Ghrelin protected neonatal rat cardiomyocyte against hypoxia/reoxygenation injury by inhibiting apoptosis through Akt-mTOR signal.[Pubmed:28281036]

Mol Biol Rep. 2017 Apr;44(2):219-226.

Reducing reperfusion period myocardial cell damage is efficient to reduce myocardial ischemia-reperfusion injury. Ghrelin can increase myocardial contractility, improve heart failure caused by myocardial infarction. This study aimed to investigate the protective effect of Ghrelin on myocardial hypoxia/reoxygenation (H/R) injury of neonatal rat cardiomyocytes (NRCMs) and to explore the mechanisms. We isolated the NRCMs, established myocardial H/R model, blocked growth hormone secretagogue receptor (GHSR) by siRNA technique, examined cell activity by MTT and LDH assay, detected apoptosis by Hoechst 33258 staining and flow cytometry and determined the expression levels of apoptosis related proteins and signaling pathway proteins by western blot. We found that Ghrelin can significantly improve cell activity and decrease apoptosis after H/R, however this effect was abolished by GHSR-siRNA. In addition, we found that Ghrelin can significantly increase the expression of Bcl-2 but inhibit the level of Bax and caspase-3. Further mechanism study found that the phosphorylation level of signaling pathway protein Akt and mTOR in Ghrelin treated group were significantly higher than that in other groups. In conclusion, Ghrelin can reduce the H/R damage on NRCMs and inhibit the apoptosis by activating Akt-mTOR signaling pathway.

Effects of peripherally and centrally applied ghrelin on the oxidative stress induced by renin angiotensin system in a rat model of renovascular hypertension.[Pubmed:28315847]

J Basic Clin Physiol Pharmacol. 2017 Jul 26;28(4):347-354.

BACKGROUND: Renovascular hypertension (RVH) is a result of renal artery stenosis, which is commonly due to astherosclerosis. In this study, we aimed to clarify the central and peripheral effects of ghrelin on the renin-angiotensin system (RAS) in a rat model of RVH. METHODS: RVH was induced in rats by partial subdiaphragmatic aortic constriction. Experiment A was designed to assess the central effect of ghrelin via the intracerebroventricular (ICV) injection of ghrelin (5 mug/kg) or losartan (0.01 mg/kg) in RVH rats. Experiment B was designed to assess the peripheral effect of ghrelin via the subcutaneous (SC) injection of ghrelin (150 mug/kg) or losartan (10 mg/kg) for 7 consecutive days. Mean arterial blood pressure (MAP), heart rate, plasma renin activity (PRA), and oxidative stress markers were measured in all rats. In addition, angiotensin II receptor type 1 (AT1R) concentration was measured in the hypothalamus of rats in Experiment B. RESULTS: RVH significantly increased brain AT1R, PRA, as well as the brain and plasma oxidative stress. Either SC or ICV ghrelin or losartan caused a significant decrease in MAP with no change in the heart rate. Central ghrelin or losartan caused a significant decrease in brain AT1R with significant alleviation of the brain oxidative stress. Central ghrelin caused a significant decrease in PRA, whereas central losartan caused a significant increase in PRA. SC ghrelin significantly decreased PRA and plasma oxidative stress, whereas SC losartan significantly increased PRA and decreased plasma oxidative stress. CONCLUSIONS: The hypotensive effect of ghrelin is mediated through the amelioration of oxidative stress, which is induced by RAS centrally and peripherally.

Effects of Chronic Ghrelin Treatment on Hypoxia-Induced Brain Oxidative Stress and Inflammation in a Rat Normobaric Chronic Hypoxia Model.[Pubmed:28323448]

High Alt Med Biol. 2017 Jun;18(2):145-151.

Omrani, Hasan, Mohammad Reza Alipour, Fereshteh Farajdokht, Hadi Ebrahimi, Mehran Mesgari Abbasi, and Gisou Mohaddes. Effects of chronic ghrelin treatment on hypoxia-induced brain oxidative stress and inflammation in a rat normobaric chronic hypoxia model. High Alt Med Biol. 18:145-151, 2017. AIM: This study aimed to evaluate the probable antioxidant effects of ghrelin in the brain and serum and its effect on tumor necrosis factor-alpha (TNF-alpha) levels in the brain in a model of chronic systemic hypoxia in rats. METHODS: Systemic hypoxia was induced by a normobaric hypoxic chamber (O2 11%) for ten days. Adult male Wistar rats were divided into control (C), chronic ghrelin (80 mug/kg/10 days) (Ghr), chronic hypoxia (CH), and CH and ghrelin (80 mug/kg/ip/10 days) (CH + Gh) groups. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and malondialdehyde (MDA), total antioxidant capacity, and TNF-alpha levels were assessed in the serum and brain tissue. RESULTS: Our results showed that chronic ghrelin administration attenuated the CH-increased oxidative stress by decreasing MDA levels in the serum and brain tissue. Moreover, ghrelin enhanced the antioxidant defense against hypoxia-induced oxidative stress in the serum and brain tissue. Brain TNF-alpha levels in CH did not change significantly; however, ghrelin significantly (p < 0.001) decreased it. CONCLUSION: These results indicated that ghrelin promoted antioxidative and anti-inflammatory defense under chronic exposure to hypoxia. Therefore, ghrelin might be used as a potential therapy in normobaric hypoxia and oxidative stress induced by CH.

In vivo and in vitro effects of ghrelin/motilin-related peptide on growth hormone secretion in the rat.[Pubmed:11174017]

Neuroendocrinology. 2001 Jan;73(1):54-61.

Ghrelin (Ghr), a 28 amino acid gastric peptide with an n-octanoylation on Ser 3, has recently been identified as an endogenous ligand of the growth hormone secretagogue (GHS) receptor. A cDNA was also isolated from a mouse stomach library encoding a protein named prepromotilin-related peptide (ppMTLRP) which shares sequence similarities with prepromotilin. Mouse and rat ppMTLRP sequences (rGhr) are identical and show 89% identity with human ghrelin (hGhr). By analogy with promotilin, cleavage of proMTLRP into an 18 amino acid endogenous processed peptide can be assumed on the basis of a conserved dibasic motif in position 9-10 of its sequence. In the present work, we compared the GH-releasing activity of rGhr28/MTLRP and of hGhr28/MTRLP with that of a shorter form of the peptide, hGhr18. A short peptide devoid of Ser-3 n-octanoylation hGhr18[-] was also tested. Addition of rGhr28, hGhr28 and hGhr18 stimulated GH release to the same extent from superfused pituitaries. The effect was dose dependent in a 10(-8) to 10(-6) M concentration range. In contrast, hGhr 18[-] was inactive. In freely moving animals, both rGhr28 and hGhr28 (10 microg, i.v.) stimulated GH release, whereas the same dose of hGhr18 or of hGhr18[-] was ineffective. After rGhr28, GH plasma levels increased as early as 5 min after injection and returned to basal values within 40-60 min. Expressed as percent stimulation, administration of rGhr28 was equally effective when injected during troughs or peaks of GH. Plasma concentrations of prolactin, adrenocorticotropin and leptin were not modified. Spontaneous GH secretory episodes were no longer observed within 3 h of rGhr28 treatment, but repeated administration of the secretagogue at 3- to 4-hour intervals resulted in a similar GH response. Activation of somatostatin (SRIH) release by ether stress did not blunt the GH response to rGhr28. This suggests that the secretagogue acts in part by inhibiting endogenous SRIH, as further substantiated by the ability of rGhr28 (10(-6) M), to decrease the amplitude of 25 mM K+-induced SRIH release from perifused hypothalami. In conclusion, (1) n-octanoylation of Ghrs and the shorter form hGhr18 is essential for the direct pituitary GH-releasing effect of this new family of endogenous GHSs; (2) only the longer forms are active in vivo and (3) inhibition of SRIH release appears involved in the mechanism of Ghr action.

Ghrelin is a growth-hormone-releasing acylated peptide from stomach.[Pubmed:10604470]

Nature. 1999 Dec 9;402(6762):656-60.

Small synthetic molecules called growth-hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through GHS-R, a G-protein-coupled receptor for which the ligand is unknown. Recent cloning of GHS-R strongly suggests that an endogenous ligand for the receptor does exist and that there is a mechanism for regulating GH release that is distinct from its regulation by hypothalamic growth-hormone-releasing hormone (GHRH). We now report the purification and identification in rat stomach of an endogenous ligand specific for GHS-R. The purified ligand is a peptide of 28 amino acids, in which the serine 3 residue is n-octanoylated. The acylated peptide specifically releases GH both in vivo and in vitro, and O-n-octanoylation at serine 3 is essential for the activity. We designate the GH-releasing peptide 'ghrelin' (ghre is the Proto-Indo-European root of the word 'grow'). Human ghrelin is homologous to rat ghrelin apart from two amino acids. The occurrence of ghrelin in both rat and human indicates that GH release from the pituitary may be regulated not only by hypothalamic GHRH, but also by ghrelin.

Keywords:

Ghrelin (rat),258338-12-4,Natural Products,Ghrelin Receptors, buy Ghrelin (rat) , Ghrelin (rat) supplier , purchase Ghrelin (rat) , Ghrelin (rat) cost , Ghrelin (rat) manufacturer , order Ghrelin (rat) , high purity Ghrelin (rat)

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: