Search Site
Home >> Research Area >>Others>>Others >> (R)-(-)-Ibuprofen


Catalog No. BCC4062
Size Price Stock
100mg $523.00 Please Inquire
Related Products

Organizitions Citing Our Products recently


Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris

Quality Control of (R)-(-)-Ibuprofen

Chemical structure


(R)-(-)-Ibuprofen Dilution Calculator

Concentration (start)
Volume (start)
Concentration (final)
Volume (final)


(R)-(-)-Ibuprofen Molarity Calculator



Chemical Properties of (R)-(-)-Ibuprofen

Cas No. 51146-57-7 SDF Download SDF
Chemical Name (2R)-2-[4-(2-methylpropyl)phenyl]propanoic acid
SMILES CC(C)Cc1ccc(cc1)[C@@H](C)C(O)=O
Standard InChI InChI=1S/C13H18O2/c1-9(2)8-11-4-6-12(7-5-11)10(3)13(14)15/h4-7,9-10H,8H2,1-3H3,(H,14,15)/t10-/m1/s1
Formula C13H18O2 M.Wt 206.28
Solubility Soluble in DMSO
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other courier with RT , or blue ice upon request.

Preparing Stock Solutions of (R)-(-)-Ibuprofen

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 4.8478 mL 24.2389 mL 48.4778 mL 96.9556 mL 121.1945 mL
5 mM 0.9696 mL 4.8478 mL 9.6956 mL 19.3911 mL 24.2389 mL
10 mM 0.4848 mL 2.4239 mL 4.8478 mL 9.6956 mL 12.1194 mL
50 mM 0.097 mL 0.4848 mL 0.9696 mL 1.9391 mL 2.4239 mL
100 mM 0.0485 mL 0.2424 mL 0.4848 mL 0.9696 mL 1.2119 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Background on (R)-(-)-Ibuprofen

(R)-Ibuprofen, a nonsteroidal anti-inflammatory, is the less active enantiomer of ibuprofen, an inhibitor of Cox-1 and Cox-2.

References on (R)-(-)-Ibuprofen

Significant Solubility of Carbon dioxide in Soluplus® Facilitates Impregnation of Ibuprofen Using Supercritical Fluid Technology.[Pubmed: 28375669]

Treatment of Soluplus® with supercritical carbon dioxide allows promising applications in preparing dispersions of amorphous solids. Several characterization techniques ware employed to reveal this effect, including CO2 gas sorption under high pressure and physicochemical characterizations techniques. A gravimetric method was used to determine the solubility of carbon dioxide in the polymer at elevated pressure. The following physicochemical characterizations were used: thermal analysis, X-ray diffraction, Fourier transform, infra-red spectroscopy and scanning electron microscopy. Drug loading of the polymer with ibuprofen as a model drug was also investigated. The proposed treatment with supercritical carbon dioxide allows to prepare solid solutions of Soluplus® in less than two hours at temperatures that do not exceed 45°C, which is a great advantage to be used for thermolabile drugs. The advantages of using this technology for Soluplus® formulations lies behind the high sorption capability of carbon dioxide inside the polymer. This will ensure rapid diffusion of the dissolved/dispersed drug inside the polymer under process conditions and rapid precipitation of the drug in the amorphous form during depressurization accompanied by foaming of the polymer.

A clinical trial comparing Lanconone® with ibuprofen for rapid relief in acute joint pain.[Pubmed: 27052991]

To study the effect of Lanconone® (1000 mg) on acute pain on exertion as compared to the standard of care, Ibuprofen (400 mg).

An integrated safety analysis of intravenous ibuprofen (Caldolor(®)) in adults.[Pubmed: 26604816]

Intravenous (IV) nonsteroidal anti-inflammatory drugs such as IV ibuprofen are increasingly used as a component of multimodal pain management in the inpatient and outpatient settings. The safety of IV ibuprofen as assessed in ten sponsored clinical studies is presented in this analysis. Overall, 1,752 adult patients have been included in safety and efficacy trials over 11 years; 1,220 of these patients have received IV ibuprofen and 532 received either placebo or comparator medication. The incidence of adverse events (AEs), serious AEs, and changes in vital signs and clinically significant laboratory parameters have been summarized and compared to patients receiving placebo or active comparator drug. Overall, IV ibuprofen has been well tolerated by hospitalized and outpatient patients when administered both prior to surgery and postoperatively as well as for nonsurgical pain or fever. The overall incidence of AEs is lower in patients receiving IV ibuprofen as compared to those receiving placebo in this integrated analysis. Specific analysis of hematological and renal effects showed no increased risk for patients receiving IV ibuprofen. A subset analysis of elderly patients suggests that no dose adjustment is needed in this higher risk population. This integrated safety analysis demonstrates that IV ibuprofen can be safely administered prior to surgery and continued in the postoperative period as a component of multimodal pain management.

Parmacokinetic evaluation of ibuprofen controlled release matrix tablets using hydrophilic Eudragit® polymer and co-excipients.[Pubmed: 26408874]

The present study was conducted to formulate controlled release dosage forms containing Ibuprofen with Eudragit® S 100 polymer. The tablets were formulated at three different ratios with the polymer to investigate the effect of different concentrations of polymer on in vitro drug release patterns/kinetics and in vivo absorption/pharmacokinetics. Pre-formulation studies were conducted including bulk density, tapped density, compressibility index, Hausner ratio and angle of repose. In vitro studies were conducted using phosphate buffer (pH 7.4) as dissolution medium. In vivo performance was evaluated using albino rabbits. Physico-chemical characteristics (i.e. dimensional tests, weight variation, hardness, friability and drug content determination) fell in the USP acceptable limits. The compressibility index was found to range between 12.02 ± 0.01% and 18.66 ± 0.03%, the Hausner ratio varied between 1.02 ± 0.01 and 1.19 ± 0.10 and the angle of repose ranged from 15.19 ± 0.01 to 24.52 ± 0.10, all indicating better flow properties than the bulk-reference standard. Both bulk and tapped densities also fell in the USP acceptable range. Ibuprofen market tablets showed Tmax of 2.1 ± 0.4h, which was significantly (P-value <0.05) lower compared to that of the reference standard (i.e. 4.09 ± 1.3h). Ibuprofen test formulation has a half-life (t1/2) of 16.9 ± 2.5h, which was significantly (P-value<0.001) higher compared to that of the reference standard (i.e. 9.23 ± 2.9h). Eudragit® S 100 polymers can be used efficiently to develop directly compressed prolonged release tablets.


(R)-(-)-Ibuprofen,51146-57-7,Others,Others, supplier, inhibitor,Antagonist,Blocker,Modulator,Agonist, activators, activates, potent, BioCrick

Online Inquiry

Fill out the information below

* Required Fields