Nagilactone C

CAS# 24338-53-2

Nagilactone C

Catalog No. BCN4040----Order now to get a substantial discount!

Product Name & Size Price Stock
Nagilactone C:5mg Please Inquire In Stock
Nagilactone C:10mg Please Inquire In Stock
Nagilactone C:20mg Please Inquire In Stock
Nagilactone C:50mg Please Inquire In Stock

Quality Control of Nagilactone C

Number of papers citing our products

Chemical structure

Nagilactone C

3D structure

Chemical Properties of Nagilactone C

Cas No. 24338-53-2 SDF Download SDF
PubChem ID 72505 Appearance Powder
Formula C19H22O7 M.Wt 362.4
Type of Compound Diterpenoids Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
SMILES CC(C)C1=C2C(C3C4C(C(C5C(C4(C2=CC(=O)O1)C)O5)O)(C(=O)O3)C)O
Standard InChIKey DGNOPGIIPQKNHD-RSKPZANQSA-N
Standard InChI InChI=1S/C19H22O7/c1-6(2)11-9-7(5-8(20)24-11)18(3)14-12(10(9)21)26-17(23)19(14,4)15(22)13-16(18)25-13/h5-6,10,12-16,21-22H,1-4H3/t10-,12-,13-,14-,15+,16-,18-,19-/m1/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Nagilactone C

The herbs of Podocarpus neriifolius

Biological Activity of Nagilactone C

Description1. Nagilactone C possesses potent antiproliferative activity against human fibrosarcoma and murine colon carcinoma tumor cell lines exhibiting ED50 values of 2.3 and 1.2 microg/ml, respectively. 2. Nagilactone C and phyllanthoside are novel protein synthesis inhibitors, they are specific for the eukaryotic translation apparatus, function in vivo and in vitro, and interfere with translation elongation. 3. Nagilactone C shows high insecticidal activity against second-instar nymphs of Eocanthecona furcellata.
TargetsAntifection

Nagilactone C Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Nagilactone C Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Nagilactone C

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.7594 mL 13.7969 mL 27.5938 mL 55.1876 mL 68.9845 mL
5 mM 0.5519 mL 2.7594 mL 5.5188 mL 11.0375 mL 13.7969 mL
10 mM 0.2759 mL 1.3797 mL 2.7594 mL 5.5188 mL 6.8985 mL
50 mM 0.0552 mL 0.2759 mL 0.5519 mL 1.1038 mL 1.3797 mL
100 mM 0.0276 mL 0.138 mL 0.2759 mL 0.5519 mL 0.6898 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Nagilactone C

Sequestration of host plant-derived compounds by geometrid moth, Milionia basalis, toxic to a predatory stink bug, Eocanthecona furcellata.[Pubmed:11504032]

J Chem Ecol. 2001 Jul;27(7):1345-53.

A predatory stink bug, Eocanthecona furcellata, died after feeding on Milionia basalis larvae. The compounds toxic to E. furcellata were isolated from the hemolymph of M. basalis larvae and identified as inumakilactone A, Nagilactone C, and Nagilactone C glucoside. The concentrations of inumakilactone A, Nagilactone C, and Nagilactone C glucoside in the hemolymph of the final instar larvae were 130, 50, and 770 microg/ml, respectively. Nagilactone C showed the highest insecticidal activity against second-instar nymphs of E. furcellata, while Nagilactone C glucoside showed the lowest, one twentieth of that of Nagilactone C. When mixed compounds were given at the same concentrations as those in hemolymph of M. basalis, all nymphs of E. furcellata died with in three days. Inumakilactone A and Nagilactone C were found to be in the leaves of podocarp, Podocarpus macrophyllus, the only host plant of M. basalis, at concentrations of 13 and 175 microg/g fresh weight, respectively. However, no Nagilactone C glucoside was detected in the leaves of this species. These results suggested that M. basalis may transform Nagilactone C to its glucoside.

Cytotoxic constituents from Podocarpus fasciculus.[Pubmed:18379113]

Chem Pharm Bull (Tokyo). 2008 Apr;56(4):585-8.

A new diterpene, 16-hydroxy communic acid (1), along with thirty one known compounds including five norditerpenes (2-6), twenty two flavonoids containing four biflavonoids (7-10), nine monoflavonoids (11-19) and nine flavanoid glycosides (20-28), as well as four phenolic constituents (29-32) were isolated from the 95% ethanolic extract of Podocarpus fasciculus. The structure of 1 was elucidated using spectral methods. Of these isolates, Nagilactone C (2) showed the most significant inhibitory effects against DLD cells (human colon carcinoma) (ED(50)=2.57 microg/ml) and compounds 7, 8, 10, 11, and 12 had moderate cytotoxic activity against human KB (human oral epithelium carcinoma), Hela (human cervical carcinoma), Hepa (human hepatoma), DLD (colon carcinoma), and A-549 (human lung carcinoma) tumor cell lines. Preliminary structure-activity relationship studies of the isolated diterpenoids and biflavonoids are discussed.

Eukaryotic protein synthesis inhibitors identified by comparison of cytotoxicity profiles.[Pubmed:14970397]

RNA. 2004 Mar;10(3):528-43.

The National Cancer Institute (NCI) Human Tumor Cell Line Anti-Cancer Drug Screen has evaluated the cytotoxicity profiles of a large number of synthetic compounds, natural products, and plant extracts on 60 different cell lines. The data for each compound/extract can be assessed for similarity of cytotoxicity pattern, relative to a given test compound, using an algorithm called COMPARE. In applying a chemical biology approach to better understand the mechanism of eukaryotic protein synthesis, we used these resources to search for novel inhibitors of translation. The cytotoxicity profiles of 31 known protein synthesis inhibitors were used to identify compounds from the NCI database with similar activity profiles. Using this approach, two natural products, phyllanthoside and Nagilactone C, were identified and characterized as novel protein synthesis inhibitors. Both compounds are specific for the eukaryotic translation apparatus, function in vivo and in vitro, and interfere with translation elongation. Our results demonstrate the feasibility of utilizing cytotoxicity profiles to identify new inhibitors of translation.

An antiproliferative norditerpene dilactone, Nagilactone C, from Podocarpus neriifolius.[Pubmed:11824527]

Phytomedicine. 2001 Nov;8(6):489-91.

An ethanolic extract of Podocarpus neriifolius D. Don (Podocarpaceae) showed antiproliferative activity against two major tumor cell lines, viz. human HT-1080 fibrosarcoma and murine color 26-L5 carcinoma. Bioassay guided fractionation showed the highest antiproliferative activity in chloroform-soluble fraction. Nagilactone C, the major constituent of this fraction was isolated and characterized by using NMR, IR and FAB-MS spectroscopic methods. Nagilactone C possessed potent antiproliferative activity against human fibrosarcoma and murine colon carcinoma tumor cell lines exhibiting ED50 values of 2.3 and 1.2 microg/ml, respectively. Hence, Nagilactone C could be the active constituent present in this plant.

Keywords:

Nagilactone C,24338-53-2,Natural Products, buy Nagilactone C , Nagilactone C supplier , purchase Nagilactone C , Nagilactone C cost , Nagilactone C manufacturer , order Nagilactone C , high purity Nagilactone C

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: