Licoricidin

CAS# 30508-27-1

Licoricidin

Catalog No. BCN6679----Order now to get a substantial discount!

Product Name & Size Price Stock
Licoricidin:5mg Please Inquire In Stock
Licoricidin:10mg Please Inquire In Stock
Licoricidin:20mg Please Inquire In Stock
Licoricidin:50mg Please Inquire In Stock

Quality Control of Licoricidin

Number of papers citing our products

Chemical structure

Licoricidin

3D structure

Chemical Properties of Licoricidin

Cas No. 30508-27-1 SDF Download SDF
PubChem ID 480865 Appearance Powder
Formula C26H32O5 M.Wt 424.5
Type of Compound Flavonoids Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name 4-[(3R)-7-hydroxy-5-methoxy-6-(3-methylbut-2-enyl)-3,4-dihydro-2H-chromen-3-yl]-2-(3-methylbut-2-enyl)benzene-1,3-diol
SMILES CC(=CCC1=C(C=CC(=C1O)C2CC3=C(C(=C(C=C3OC2)O)CC=C(C)C)OC)O)C
Standard InChIKey GBRZTUJCDFSIHM-KRWDZBQOSA-N
Standard InChI InChI=1S/C26H32O5/c1-15(2)6-8-19-22(27)11-10-18(25(19)29)17-12-21-24(31-14-17)13-23(28)20(26(21)30-5)9-7-16(3)4/h6-7,10-11,13,17,27-29H,8-9,12,14H2,1-5H3/t17-/m0/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Licoricidin

The roots of Glycyrrhiza uralensis.

Biological Activity of Licoricidin

Description1. The hexane-ethanol extract of Glycyrrhiza uralensis, which contains licoricidin, is a potent anti-metastatic agent, which can markedly inhibit the metastatic and invasive capacity of malignant prostate cancer cells. 2. Licoricidin inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis. 3. Licoricidin and licorisoflavan A are effective in inhibiting the growth of all three bacterial species(Porphyromonas gingivalis, Prevotella intermedia and Solobacterium moorei), with minimal inhibitory concentrations in the range of 2-80 ug /ml, they have a potential for reducing bacterial volatile sulfur compounds (VSCs) production and therefore for controlling halitosis. 4. Licoricidin blocks UVA-induced photoaging via ROS scavenging,this activity converges to limit the activity of MMP-1, suggests that licoricidin may be considered as an active ingredient in new topically applied anti-ageing formulations. 5. Licoricidin and licorisoflavan A have potential for the development of novel host-modulating strategies for the treatment of cytokine and/or MMP-mediated disorders such as periodontitis.
TargetsMMP(e.g.TIMP) | ROS | VEGFR | HIF | NOS | COX | NF-kB | p65 | AP-1

Licoricidin Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Licoricidin Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Licoricidin

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.3557 mL 11.7786 mL 23.5571 mL 47.1143 mL 58.8928 mL
5 mM 0.4711 mL 2.3557 mL 4.7114 mL 9.4229 mL 11.7786 mL
10 mM 0.2356 mL 1.1779 mL 2.3557 mL 4.7114 mL 5.8893 mL
50 mM 0.0471 mL 0.2356 mL 0.4711 mL 0.9423 mL 1.1779 mL
100 mM 0.0236 mL 0.1178 mL 0.2356 mL 0.4711 mL 0.5889 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Licoricidin

Reduction of bacterial volatile sulfur compound production by licoricidin and licorisoflavan A from licorice.[Pubmed:22368239]

J Breath Res. 2012 Mar;6(1):016006.

Halitosis affects a large proportion of the population and is, in most cases, caused by the production of volatile sulfur compounds (VSCs), particularly methyl mercaptan and hydrogen sulfide, by specific bacterial species colonizing the oral cavity. In this study, a supercritical extract of Chinese licorice (Glycyrrhiza uralensis), and its major isoflavans, Licoricidin and licorisoflavan A, were investigated for their effect on growth, VSC production and protease activity of Porphyromonas gingivalis, Prevotella intermedia and Solobacterium moorei, which have been associated with halitosis. The effects of licorice extract, Licoricidin, and licorisoflavan A on VSC production in a saliva model were also tested. We first showed that Licoricidin and licorisoflavan A, and to a lesser extent the licorice extract, were effective in inhibiting the growth of all three bacterial species, with minimal inhibitory concentrations in the range of 2-80 microg ml(-1). The licorice extract and the two isolates Licoricidin and licorisoflavan A, were able to dose-dependently reduce VSC production by P. gingivalis, Prev. intermedia, and S. moorei as well as by a human saliva model. Although the extract and isolates did not inhibit the proteolytic activity of bacteria, they blocked the conversion of cysteine into hydrogen sulfide by Prev. intermedia. Lastly, the deodorizing effects of the licorice extract, Licoricidin, and licorisoflavan A were demonstrated, as they can neutralize P. gingivalis-derived VSCs. Licorisoflavan A (10 microg ml(-1)) was found to be the most effective by reducing VSC levels by 50%. Within the limitations of this study, it can be concluded that a licorice supercritical extract and its major isoflavans (Licoricidin and licorisoflavan A) represent natural ingredients with a potential for reducing bacterial VSC production and therefore for controlling halitosis.

Modulation of matrix metalloproteinase and cytokine production by licorice isolates licoricidin and licorisoflavan A: potential therapeutic approach for periodontitis.[Pubmed:20722535]

J Periodontol. 2011 Jan;82(1):122-8.

BACKGROUND: Inflammatory cytokines and matrix metalloproteinases (MMPs) produced by resident and inflammatory cells in response to periodontopathogens play a major role in the tissue destruction observed in periodontitis, which is a disease that affects tooth-supporting structures. In the present study, we investigate the effects of licorice-derived Licoricidin (LC) and licorisoflavan A (LIA) on the secretion of various cytokines and MMPs by human monocyte-derived macrophages stimulated with Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) lipopolysaccharide (LPS). METHODS: Macrophages were treated with non-toxic concentrations of LC or LIA before being stimulated with A. actinomycetemcomitans LPS. The secretion of cytokines and MMPs and the activation of nuclear factor-kappa B (NF-kappaB) p65 and activator protein (AP)-1 were assessed by enzyme-linked immunosorbent assays. RESULTS: LC and LIA inhibited the secretion of interleukin (IL)-6 and chemokine (C-C motif) ligand 5 in a concentration-dependent manner but did not affect the secretion of IL-8 by LPS-stimulated macrophages. LC and LIA also inhibited the secretion of MMP-7, -8, and -9 by macrophages. The suppression of cytokine and MMP secretion by LC and LIA was associated with the reduced activation of NF-kappaB p65 but not that of AP-1. CONCLUSION: The present study suggests that LC and LIA have potential for the development of novel host-modulating strategies for the treatment of cytokine and/or MMP-mediated disorders such as periodontitis.

Licoricidin, an Active Compound in the Hexane/Ethanol Extract of Glycyrrhiza uralensis, Inhibits Lung Metastasis of 4T1 Murine Mammary Carcinoma Cells.[Pubmed:27314329]

Int J Mol Sci. 2016 Jun 14;17(6). pii: ijms17060934.

Licorice extracts containing glycyrrhizin exhibit anti-carcinogenic properties. Because glycyrrhizin induces severe hypokalemia and hypertension, we prepared a hexane/ethanol extract of Glycyrrhiza uralensis (HEGU) that lacks glycyrrhizin, and showed that HEGU induces apoptosis and G1 cell cycle arrest and inhibits migration of DU145 human prostate cancer cells. Our previous in vitro studies identified two active components in HEGU: isoangustone A, which induces apoptosis and G1 cycle arrest, and Licoricidin, which inhibits metastasis. This study examined whether HEGU and Licoricidin inhibit metastasis using the 4T1 mammary cancer model. Both HEGU and Licoricidin treatment reduced pulmonary metastasis and the expression of CD45, CD31, HIF-1alpha, iNOS, COX-2, and VEGF-A in tumor tissues. Additionally, a decrease in protein expression of VEGF-R2, VEGF-C, VEGF-R3, and LYVE-1 was noted in tumor tissues of Licoricidin-treated mice. Furthermore, the blood concentrations of MMP-9, ICAM-1, VCAM-1, and VEGF-A were decreased in HEGU-treated mice. In vitro 4T1 cell culture results showed that both HEGU and Licoricidin inhibited cell migration, MMP-9 secretion, and VCAM expression. The present study demonstrates that the Licoricidin in HEGU inhibits lung metastasis of 4T1 mammary carcinoma cells, which may be mediated via inhibition of cancer cell migration, tumor angiogenesis, and lymphangiogenesis.

Hexane-ethanol extract of Glycyrrhiza uralensis containing licoricidin inhibits the metastatic capacity of DU145 human prostate cancer cells.[Pubmed:20487583]

Br J Nutr. 2010 Nov;104(9):1272-82.

Licorice extracts are known to exhibit anti-carcinogenic activities. However, chronic licorice consumption can lead to serious side effects due to the presence of considerable quantities of glycyrrhizin, which causes severe hypokalaemia and hypertension. In the present study, we evaluated the effects of a hexane-ethanol extract of Glycyrrhiza uralensis (HEGU), which lacks glycyrrhizin, on the metastatic characteristics of DU145 prostate cancer cells. HEGU inhibited basal and epidermal growth factor-induced cell migration, invasion and adhesion in a dose-dependent fashion. HEGU significantly suppressed the secretion and activation of the matrix metalloproteinase (MMP)-2 and MMP-9. The secretion of tissue inhibitor of metalloproteinase (TIMP)-1 was reduced, but that of TIMP-2 was increased in HEGU-treated cells. HEGU reduced the protein levels of integrin-alpha2, the intercellular adhesion molecule, and the vascular cell adhesion molecule. An active fraction of HEGU was separated via column chromatography, and the structure of the active component, Licoricidin, was identified via 1H NMR and 13C NMR. The treatment of DU145 cells with Licoricidin induced a reduction in cell migration and the secretion of MMP-9, TIMP-1, urokinase-type plasminogen activator and vascular endothelial growth factor, as well as in the expression of adhesion molecules. These results indicate that HEGU, which contains Licoricidin, is a potent anti-metastatic agent, which can markedly inhibit the metastatic and invasive capacity of malignant prostate cancer cells. The observed reductions in the activation of proteases and the levels of adhesion molecules may constitute a component of the mechanisms by which HEGU inhibits the migration and adhesion of prostate cancer cells.

Licoricidin, an isoflavonoid isolated from Glycyrrhiza uralensis Fisher, prevents UVA-induced photoaging of human dermal fibroblasts.[Pubmed:27502959]

Int J Cosmet Sci. 2017 Apr;39(2):133-140.

OBJECTIVE: Licoricidin is an isoflavonoid isolated from Glycyrrhiza uralensis Fisher. In this study, we investigated the effects of Licoricidin on photoaging of UVA-irradiated human dermal fibroblasts (HDFs). METHODS: In vitro reactive oxygen species (ROS) scavenging activity, cellular protective effect and inhibition of elastase activity was determined by Fe(3+) -EDTA/H2 O2 systems, photohaemolysis and elastase activity assay, respectively. Anti-oxidative capacity of the compound was evaluated by fluorescent ELISA and 2', 7'-dichlorofluorescin-diacetate (DCF-DA) assay. The expression of protein and phosphorylation was examined using Western blot. RESULTS: The ROS scavenging activity (OSC50 ) of Licoricidin was 2.77 muM. It was 3.1-fold higher than that of L-ascorbic acid. Its protective effects were confirmed in a study of (1) O2 -induced cellular damage to human erythrocytes. The tau50 value of 10 muM of Licoricidin was 71.0 min; this was markedly higher than that obtained with alpha-tocopherol (37.0 min). The elastase inhibitory activity of Licoricidin (IC50 of 61.2 muM) was 2.1-fold more potent than that of oleanolic acid. Licoricidin markedly reduced the UVA-induced intracellular ROS in a concentration-dependent manner. Western blot revealed that Licoricidin attenuated the UVA-dependent induction of MMP-1 protein. Mechanistically, this appeared to be due to Licoricidin-dependent inhibition of mitogen-activated protein kinases (MAPK) phosphorylation, which resulted in decreased c-Jun activation and reduced c-Jun and c-Fos expression. CONCLUSION: Licoricidin blocks UVA-induced photoaging via ROS scavenging. This activity converges to limit the activity of MMP-1. These data suggest that Licoricidin may be considered as an active ingredient in new topically applied anti-ageing formulations.

Description

Licoricidin (LCD) is isolated from Glycyrrhiza uralensis Fisch, possesses anti-cancer activities. Licoricidin (LCD) inhibit SW480 cells (IC50=7.2 μM) by inducing cycle arrest, apoptosis and autophagy, and is a potential chemopreventive or chemotherapeutic agent against colorectal cancer. Licoricidin (LCD) inhibits Lung Metastasis by inhibition of tumor angiogenesis and lymphangiogenesis as well as changes in the local microenvironment of tumor tissues the anticarcinogenic effect. Licoricidin enhanced gemcitabine-induced cytotoxicity in Osteosarcoma (OS) cells by inactivation of the Akt and NF-κB pathways in vitro and in vivo. Licoricidin blocks UVA-induced photoaging via ROS scavenging, limits the activity of MMP-1, it can be considered as an active ingredient in new topically applied anti-ageing formulations.

Keywords:

Licoricidin,30508-27-1,Natural Products, buy Licoricidin , Licoricidin supplier , purchase Licoricidin , Licoricidin cost , Licoricidin manufacturer , order Licoricidin , high purity Licoricidin

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: