Home >> Research Area >> 2-Acetonaphthone

2-Acetonaphthone

CAS# 93-08-3

2-Acetonaphthone

Catalog No. BCC8510----Order now to get a substantial discount!

Product Name & Size Price Stock
2-Acetonaphthone:5mg Please Inquire In Stock
2-Acetonaphthone:10mg Please Inquire In Stock
2-Acetonaphthone:20mg Please Inquire In Stock
2-Acetonaphthone:50mg Please Inquire In Stock

Quality Control of 2-Acetonaphthone

Number of papers citing our products

Chemical structure

2-Acetonaphthone

3D structure

Chemical Properties of 2-Acetonaphthone

Cas No. 93-08-3 SDF Download SDF
PubChem ID 7122 Appearance Powder
Formula C12H10O M.Wt 170
Type of Compound N/A Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name 1-naphthalen-2-ylethanone
SMILES CC(=O)C1=CC2=CC=CC=C2C=C1
Standard InChIKey XSAYZAUNJMRRIR-UHFFFAOYSA-N
Standard InChI InChI=1S/C12H10O/c1-9(13)11-7-6-10-4-2-3-5-12(10)8-11/h2-8H,1H3
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

2-Acetonaphthone Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

2-Acetonaphthone Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of 2-Acetonaphthone

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 5.8824 mL 29.4118 mL 58.8235 mL 117.6471 mL 147.0588 mL
5 mM 1.1765 mL 5.8824 mL 11.7647 mL 23.5294 mL 29.4118 mL
10 mM 0.5882 mL 2.9412 mL 5.8824 mL 11.7647 mL 14.7059 mL
50 mM 0.1176 mL 0.5882 mL 1.1765 mL 2.3529 mL 2.9412 mL
100 mM 0.0588 mL 0.2941 mL 0.5882 mL 1.1765 mL 1.4706 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on 2-Acetonaphthone

QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.[Pubmed:27942650]

Environ Sci Process Impacts. 2017 Mar 22;19(3):324-338.

Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E1), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-Acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

Density functional theory study of direct and indirect photodegradation mechanisms of sulfameter.[Pubmed:27424205]

Environ Sci Pollut Res Int. 2016 Oct;23(19):19921-30.

Sulfonamide antibiotics (SAs) have been observed to undergo direct and indirect photodegradation in natural water environments. In this study, the density functional theory (DFT) method was employed for the study of direct and indirect photodegradation mechanisms of sulfameter (SME) with excited triplet states of dissolved organic matter ((3)DOM(*)) and metal ions. SME was adopted as a representative of SAs, and SO2 extrusion product was obtained with different energy paths in the triplet-sensitized photodegradation of the neutral (SME(0)) and the anionic (SME(-)) form of SME. The selected divalent metal ions (Ca(2+), Mg(2+), and Zn(2+)) promoted the triplet-sensitized photodegradation of SME(0) but showed an inhibitory effect in triplet-sensitized photodegradation of SME(-). The triplet-sensitized indirect photodegradation mechanism of SME was investigated with the three DOM analogues, i.e., 2-Acetonaphthone (2-AN), fluorenone (FN), and thioxanthone (TN). Results indicated that the selected DOM analogues are highly responsible for the photodegradation via attacking on amine moiety of SME. According to the natural bond orbital (NBO) analysis, the triplet-sensitized photodegradation mechanism of SME(0) with 2-AN, FN, and TN was H-transfer, and the SME(-) was proton plus electron transfer with these DOM analogues.

Synthesis, characterization and biological activity of some unsymmetrical Schiff base transition metal complexes.[Pubmed:25791998]

Drug Chem Toxicol. 2016;39(1):41-7.

In this study, several unsymmetrical Schiff bases and their cobalt and manganese complexes have been synthesized and characterized. The unsymmetrical Schiff bases were prepared from reaction of o-phenylendiamine derivatives with 1-hydroxy-2-Acetonaphthone and then the product was reacted with the following aldehydes: salicyaldehyde, 2-hydroxynaphthaldehyde, 2-pyridinecarboxaldehyde and 2-qinolinecarboxaldehyde to produce the desired tetradentate unsymmetrical Schiff base ligands H2SL, H2NL, HPYL and HQN, respectively. Reaction of these ligands with cobalt and manganese salts produced complexes of the general formula [M(SL)], [(NL)], [M(PYL)] and [M(QL)]. All the complexes were characterized by elemental analysis, infrared spectroscopy, UV-visible spectroscopy, electrical conductivity and magnetic susceptibility measurements. The prepared complexes were examined for their anti-bacterial activity using gram-positive and gram-negative pathogens. The following complexes showed strong antibacterial activity against Staphylococcus aureus: MnSL1, MnSL2 and MnSL3. The genotoxic activity of four complexes, which are MnNL1, MnSL1, CoNL1 and CoSL1, were examined using 8-hydroxy-2-deoxy guanosine (8-OHdG) assay in cultured human blood lymphocytes. All examined complexes were found to be genotoxic at examined concentrations (0.1-100 microg/mL), but with variable magnitudes (p < 0.05). The levels of 8-OHdG induced by MnNL1 and MnSL1 were significantly higher than that induced by CoNL1 and CoSL1 ones. In general, the order of mutagenicity of the compounds is MnSL1 > MnNL1 > CoSL1 > CoNL1. In conclusion, some of the prepared complexes showed some biological activities that might be of interest for future research.

Steady-State Spectroscopy of the 2-(N-methylacetimidoyl)-1-naphthol Molecule.[Pubmed:25737351]

Photochem Photobiol. 2015 May-Jun;91(3):660-71.

The steady-state spectroscopy of 2-(N-methylacetimidoyl)-1-naphthol (MAN) reveals composite absorption and emission spectra from 298 to 193 K in hexane. The ground electronic state (So) absorption can be assigned to the sum of three molecular structures: the OH normal tautomer, and two NH proton transfer tautomers. The NH-structures are the most stable ones in equilibrium with the OH tautomer for the S0 state. On photoexcitation of the OH tautomer the excited state intramolecular proton transfer is undergone, and the corresponding NH emission is monitored at 470 nm. On photoexcitation of the NH tautomers the previous emission is monitored in addition to another emission at 600 nm, which is ascribed to intramolecular hydrogen-bonded (IHB) nonplanar NH structures generated from the IHB planar NH tautomers. A Jablonski diagram is introduced which gathers all the experimental evidence as well as the theoretical calculations executed at the DFT-B3LYP and TD-DFT levels. The MAN molecule is compared with other analogs such as 1-hydroxy-2-Acetonaphthone (HAN), 2-(1'-hydroxy-2'-naphthyl)benzimidazole and methyl 1-hydroxy-2-naphthoate to validate the theoretical calculations. Photoexcitation of MAN generates two emission bands at longer wavelengths than that of the emission band of HAN. The MAN molecule exhibits a great photostability in hydrocarbon solution which depends on the photophysics of the NH tautomers (keto forms).

Elucidating triplet-sensitized photolysis mechanisms of sulfadiazine and metal ions effects by quantum chemical calculations.[Pubmed:25496743]

Chemosphere. 2015 Mar;122:62-69.

Sulfadiazine (SDZ) mainly proceeds triplet-sensitized photolysis with dissolved organic matter (DOM) in the aquatic environment. However, the mechanisms underlying the triplet-sensitized photolysis of SDZ with DOM have not been fully worked out. In this study, we investigated the mechanisms of triplet-sensitized photolysis of SDZ(0) (neutral form) and SDZ(-) (anionic form) with four DOM analogues, i.e., fluorenone (FL), thioxanthone (TX), 2-Acetonaphthone (2-AN), and 4-benzoylbenzoic acid (CBBP), and three metal ions (i.e., Mg(2+), Ca(2+), and Zn(2+)) effects using quantum chemical calculations. Results indicated that the triplet-sensitized photolysis mechanism of SDZ(0) with FL, TX, and 2-AN was hydrogen transfer, and with CBBP was electron transfer along with proton transfer (for complex SDZ(0)-CBBP2) and hydrogen transfer (for complex SDZ(0)-CBBP1). The triplet-sensitized photolysis mechanisms of SDZ(-) with FL, TX, and CBBP was electron transfer along with proton transfer, and with 2-AN was hydrogen transfer. The triplet-sensitized photolysis product of both SDZ(0) and SDZ(-) was a sulfur dioxide extrusion product (4-(2-iminopyrimidine-1(2H)-yl)aniline), but the formation routs of the products for SDZ(0) and SDZ(-) were different. In addition, effects of the metal ions on the triplet-sensitized photolysis of SDZ(0) and SDZ(-) were different. The metal ions promoted the triplet-sensitized photolysis of SDZ(0), but inhibited the triplet-sensitized photolysis of SDZ(-).

Excited state intramolecular proton transfer dynamics of 1-hydroxy-2-acetonaphthone.[Pubmed:25485930]

J Phys Chem B. 2015 Feb 12;119(6):2620-7.

Excited state intramolecular proton transfer (ESIPT) of 1-hydroxy-2-Acetonaphthone (HAN) has been in controversy, mainly because its Stokes shift is small compared to those of typical ESIPT molecules. We have investigated excited state dynamics of HAN by time-resolved fluorescence with a resolution high enough to record the nuclear wave packet motions in the excited state. Population dynamics of both the normal and tautomer forms were recorded together with the wave packet motions of the tautomer in the excited state, which confirm the ESIPT of HAN. The population dynamics of the normal and tautomer forms imply that the ESIPT dynamics is biphasic with two time constants <25 and 80 fs. Theoretical analysis of the vibrational modes of the tautomer excited impulsively reveals that major part of the change for the ESIPT reaction is on the naphthalene ring.

Quenching of excited triplet states by dissolved natural organic matter.[Pubmed:24083647]

Environ Sci Technol. 2013 Nov 19;47(22):12802-10.

Excited triplet states of aromatic ketones and quinones are used as proxies to assess the reactivity of excited triplet states of the dissolved organic matter ((3)DOM*) in natural waters. (3)DOM* are crucial transients in environmental photochemistry responsible for contaminant transformation, production of reactive oxygen species, and potentially photobleaching of DOM. In recent photochemical studies aimed at clarifying the role of DOM as an inhibitor of triplet-induced oxidations of organic contaminants, aromatic ketones have been used in the presence of DOM, and the question of a possible interaction between their excited triplet states and DOM has emerged. To clarify this issue, time-resolved laser spectroscopy was applied to measure the excited triplet state quenching of four different model triplet photosensitizers induced by a suite of DOM from various aquatic and terrestrial sources. While no quenching for the anionic triplet sensitizers 4-carboxybenzophenone (CBBP) and 9,10-anthraquinone-2,6-disulfonic acid (2,6-AQDS) was detected, second-order quenching rate constants with DOM for the triplets of 2-Acetonaphthone (2AN) and 3-methoxyacetophenone (3MAP) in the range of 1.30-3.85 x 10(7) L mol(C)(-1) s(-1) were determined. On the basis of the average molecular weight of DOM molecules, the quenching for these uncharged excited triplet molecules is nearly diffusion-controlled, but significant quenching (>10%) in aerated water is not expected to occur below DOM concentrations of 22-72 mg(C) L(-1).

Phenolic antioxidants inhibit the triplet-induced transformation of anilines and sulfonamide antibiotics in aqueous solution.[Pubmed:22510041]

Environ Sci Technol. 2012 May 15;46(10):5455-62.

Recent studies have shown that dissolved organic matter (DOM) may inhibit the excited triplet-induced oxidation of several aromatic water contaminants, in particular those containing an aniline functionality. Such an inhibition was ascribed to antioxidant moieties of DOM. The present study was conducted with the aim of verifying whether well-defined antioxidants could act as inhibitors in analogy to DOM. Various substituted phenols exhibiting antioxidant character were able, at micromolar concentration, to slow down the photoinduced depletion of several anilines and sulfonamides in aerated aqueous solution containing 2-Acetonaphthone as the photosensitizer. A concomitant accelerated degradation of the phenols in the presence of such contaminants was observed. This reinforces the hypothesis of reduction of oxidation intermediates of the contaminants by the phenols. Phenol (unsubstituted) was found to be a useful inhibitor even in the case of DOM-photosensitized transformations. Phenolic antioxidants are proposed as diagnostic tools to investigate the aquatic photochemistry of aromatic amines.

Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-yl)ethanone Thiosemicarbazone.[Pubmed:22303515]

Int J Inorg Chem. 2011 Jan 1;2011.

A novel thiosemicarbazone from 2-Acetonaphthone (represented as acnTSC) has been synthesized and its basic coordination chemistry with zinc(II), cobalt(II), and copper(II) explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC)(2)Cl(2)] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2). The compounds bind to DNA via an intercalative mode with binding constants of 9.7 x 10(4) M(-1), 1.8 x 10(5) M(-1), and 9.5 x 10(4) M(-1) for the zinc, cobalt, and copper complexes, respectively.

Keywords:

2-Acetonaphthone,93-08-3,Natural Products, buy 2-Acetonaphthone , 2-Acetonaphthone supplier , purchase 2-Acetonaphthone , 2-Acetonaphthone cost , 2-Acetonaphthone manufacturer , order 2-Acetonaphthone , high purity 2-Acetonaphthone

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: