Home >> Research Area >>Natural Products>>Steroids>> Dihydrolanosterol

Dihydrolanosterol

CAS# 911660-54-3

Dihydrolanosterol

Catalog No. BCX1265----Order now to get a substantial discount!

Product Name & Size Price Stock
Dihydrolanosterol: 5mg Please Inquire In Stock
Dihydrolanosterol: 10mg Please Inquire In Stock
Dihydrolanosterol: 20mg Please Inquire Please Inquire
Dihydrolanosterol: 50mg Please Inquire Please Inquire
Dihydrolanosterol: 100mg Please Inquire Please Inquire
Dihydrolanosterol: 200mg Please Inquire Please Inquire
Dihydrolanosterol: 500mg Please Inquire Please Inquire
Dihydrolanosterol: 1000mg Please Inquire Please Inquire

Quality Control of Dihydrolanosterol

Number of papers citing our products

Chemical structure

Dihydrolanosterol

Chemical Properties of Dihydrolanosterol

Cas No. 911660-54-3 SDF Download SDF
PubChem ID N/A Appearance Powder
Formula C30H52O M.Wt 428.75
Type of Compound Steroids Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Dihydrolanosterol Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Dihydrolanosterol Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Dihydrolanosterol

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 2.3324 mL 11.6618 mL 23.3236 mL 46.6472 mL 58.309 mL
5 mM 0.4665 mL 2.3324 mL 4.6647 mL 9.3294 mL 11.6618 mL
10 mM 0.2332 mL 1.1662 mL 2.3324 mL 4.6647 mL 5.8309 mL
50 mM 0.0466 mL 0.2332 mL 0.4665 mL 0.9329 mL 1.1662 mL
100 mM 0.0233 mL 0.1166 mL 0.2332 mL 0.4665 mL 0.5831 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Dihydrolanosterol

Direct binding to sterols accelerates endoplasmic reticulum-associated degradation of HMG CoA reductase.[Pubmed:38319967]

Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2318822121.

The maintenance of cholesterol homeostasis is crucial for normal function at both the cellular and organismal levels. Two integral membrane proteins, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and Scap, are key targets of a complex feedback regulatory system that operates to ensure cholesterol homeostasis. HMGCR catalyzes the rate-limiting step in the transformation of the 2-carbon precursor acetate to 27-carbon cholesterol. Scap mediates proteolytic activation of sterol regulatory element-binding protein-2 (SREBP-2), a membrane-bound transcription factor that controls expression of genes involved in the synthesis and uptake of cholesterol. Sterol accumulation triggers binding of HMGCR to endoplasmic reticulum (ER)-localized Insig proteins, leading to the enzyme's ubiquitination and proteasome-mediated ER-associated degradation (ERAD). Sterols also induce binding of Insigs to Scap, which leads to sequestration of Scap and its bound SREBP-2 in the ER, thereby preventing proteolytic activation of SREBP-2 in the Golgi. The oxygenated cholesterol derivative 25-hydroxycholesterol (25HC) and the methylated cholesterol synthesis intermediate 24,25-Dihydrolanosterol (DHL) differentially modulate HMGCR and Scap. While both sterols promote binding of HMGCR to Insigs for ubiquitination and subsequent ERAD, only 25HC inhibits the Scap-mediated proteolytic activation of SREBP-2. We showed previously that 1,1-bisphosphonate esters mimic DHL, accelerating ERAD of HMGCR while sparing SREBP-2 activation. Building on these results, our current studies reveal specific, Insig-independent photoaffinity labeling of HMGCR by photoactivatable derivatives of the 1,1-bisphosphonate ester SRP-3042 and 25HC. These findings disclose a direct sterol binding mechanism as the trigger that initiates the HMGCR ERAD pathway, providing valuable insights into the intricate mechanisms that govern cholesterol homeostasis.

Recent advances in antifungal drug development targeting lanosterol 14alpha-demethylase (CYP51): A comprehensive review with structural and molecular insights.[Pubmed:37220949]

Chem Biol Drug Des. 2023 Sep;102(3):606-639.

Fungal infections are posing serious threat to healthcare system due to emerging resistance among available antifungal agents. Among available antifungal agents in clinical practice, azoles (diazole, 1,2,4-triazole and tetrazole) remained most effective and widely prescribed antifungal agents. Now their associated side effects and emerging resistance pattern raised a need of new and potent antifungal agents. Lanosterol 14alpha-demethylase (CYP51) is responsible for the oxidative removal of 14alpha-methyl group of sterol precursors lanosterol and 24(28)-methylene-24,25-Dihydrolanosterol in ergosterol biosynthesis hence an essential component of fungal life cycle and prominent target for antifungal drug development. This review will shed light on various azole- as well as non-azoles-based derivatives as potential antifungal agents that target fungal CYP51. Review will provide deep insight about structure activity relationship, pharmacological outcomes, and interactions of derivatives with CYP51 at molecular level. It will help medicinal chemists working on antifungal development in designing more rational, potent, and safer antifungal agents by targeting fungal CYP51 for tackling emerging antifungal drug resistance.

Processive kinetics in the three-step lanosterol 14alpha-demethylation reaction catalyzed by human cytochrome P450 51A1.[Pubmed:37209823]

J Biol Chem. 2023 Jul;299(7):104841.

Cytochrome P450 (P450, CYP) family 51 enzymes catalyze the 14alpha-demethylation of sterols, leading to critical products used for membranes and the production of steroids, as well as signaling molecules. In mammals, P450 51 catalyzes the 3-step, 6-electron oxidation of lanosterol to form (4beta,5alpha)-4,4-dimethyl-cholestra-8,14,24-trien-3-ol (FF-MAS). P450 51A1 can also use 24,25-Dihydrolanosterol (a natural substrate in the Kandutsch-Russell cholesterol pathway). 24,25-Dihydrolanosterol and the corresponding P450 51A1 reaction intermediates, the 14alpha-alcohol and -aldehyde derivatives of Dihydrolanosterol, were synthesized to study the kinetic processivity of the overall 14alpha-demethylation reaction of human P450 51A1. A combination of steady-state kinetic parameters, steady-state binding constants, dissociation rates of P450-sterol complexes, and kinetic modeling of the time course of oxidation of a P450-Dihydrolanosterol complex showed that the overall reaction is highly processive, with k(off) rates of P450 51A1-Dihydrolanosterol and the 14alpha-alcohol and 14alpha-aldehyde complexes being 1 to 2 orders of magnitude less than the forward rates of competing oxidations. epi-Dihydrolanosterol (the 3alpha-hydroxy analog) was as efficient as the common 3beta-hydroxy isomer in the binding and formation of dihydro FF-MAS. The common lanosterol contaminant dihydroagnosterol was found to be a substrate of human P450 51A1, with roughly one-half the activity of Dihydrolanosterol. Steady-state experiments with 14alpha-methyl deuterated Dihydrolanosterol showed no kinetic isotope effect, indicating that C-14alpha C-H bond breaking is not rate-limiting in any of the individual steps. The high processivity of this reaction generates higher efficiency and also renders the reaction less sensitive to inhibitors.

Characterization of the cholesterol biosynthetic pathway in Dioscorea transversa.[Pubmed:37142228]

J Biol Chem. 2023 Jun;299(6):104768.

Cholesterol is the precursor of bioactive plant metabolites such as steroidal saponins. An Australian plant, Dioscorea transversa, produces only two steroidal saponins: 1beta-hydroxyprotoneogracillin and protoneogracillin. Here, we used D. transversa as a model in which to elucidate the biosynthetic pathway to cholesterol, a precursor to these compounds. Preliminary transcriptomes of D. transversa rhizome and leaves were constructed, annotated, and analyzed. We identified a novel sterol side-chain reductase as a key initiator of cholesterol biosynthesis in this plant. By complementation in yeast, we determine that this sterol side-chain reductase reduces Delta(24,28) double bonds required for phytosterol biogenesis as well as Delta(24,25) double bonds. The latter function is believed to initiate cholesterogenesis by reducing cycloartenol to cycloartanol. Through heterologous expression, purification, and enzymatic reconstitution, we also demonstrate that the D. transversa sterol demethylase (CYP51) effectively demethylates obtusifoliol, an intermediate of phytosterol biosynthesis and 4-desmethyl-24,25-Dihydrolanosterol, a postulated downstream intermediate of cholesterol biosynthesis. In summary, we investigated specific steps of the cholesterol biosynthetic pathway, providing further insight into the downstream production of bioactive steroidal saponin metabolites.

Integrated Analysis of Gut Microbiome and Lipid Metabolism in Mice Infected with Carbapenem-Resistant Enterobacteriaceae.[Pubmed:36295794]

Metabolites. 2022 Sep 22;12(10):892.

The disturbance in gut microbiota composition and metabolism has been implicated in the process of pathogenic bacteria infection. However, the characteristics of the microbiota and the metabolic interaction of commensals-host during pathogen invasion remain more than vague. In this study, the potential associations of gut microbes with disturbed lipid metabolism in mice upon carbapenem-resistant Escherichia coli (CRE) infection were explored by the biochemical and multi-omics approaches including metagenomics, metabolomics and lipidomics, and then the key metabolites-reaction-enzyme-gene interaction network was constructed. Results showed that intestinal Erysipelotrichaceae family was strongly associated with the hepatic total cholesterol and HDL-cholesterol, as well as a few sera and fecal metabolites involved in lipid metabolism such as 24, 25-Dihydrolanosterol. A high-coverage lipidomic analysis further demonstrated that a total of 529 lipid molecules was significantly enriched and 520 were depleted in the liver of mice infected with CRE. Among them, 35 lipid species showed high correlations (|r| > 0.8 and p < 0.05) with the Erysipelotrichaceae family, including phosphatidylglycerol (42:2), phosphatidylglycerol (42:3), phosphatidylglycerol (38:5), phosphatidylcholine (42:4), ceramide (d17:1/16:0), ceramide (d18:1/16:0) and diacylglycerol (20:2), with correlation coefficients higher than 0.9. In conclusion, the systematic multi-omics study improved the understanding of the complicated connection between the microbiota and the host during pathogen invasion, which thereby is expected to lead to the future discovery and establishment of novel control strategies for CRE infection.

Isolation of lanosterol and dihydrolanosterol from the unsaponifiable matter of lanolin by urea complexation and countercurrent chromatography in heart-cut recycling mode.[Pubmed:36191441]

J Chromatogr B Analyt Technol Biomed Life Sci. 2022 Nov 1;1210:123470.

4,4-Dimethyl-substituted sterols are bioactive minor sterols of most animal fats and plant oils, but higher shares are present in lanolin (wool grease). Here, the isolation of the 4,4-dimethyl-substituted sterols Dihydrolanosterol and lanosterol from lanolin by countercurrent chromatography (CCC) is described. An initial examination of the hexane extract of saponified lanolin showed the presence of relatively high portions of fatty alcohols which were known to co-elute with the target analytes in CCC. Hence, fatty alcohols were precipitated by urea complexation. Unexpectedly, 4,4-dimethyl-substituted sterols were also found in the crystalline fraction, while cholesterol and other desmethylsterols were detected in the liquid phase. Urea complexation represented a useful preparative method for the separation of desmethylsterols and 4,4-dimethyl-substituted sterols from lanolin. Shake flask experiments of 4,4-dimethyl-substituted sterols and fatty alcohols with 14 biphasic solvent systems indicated suitable partition coefficients (K values) with n-hexane/ethanol/water (12:8:1, v/v/v) and n-hexane/benzotrifluoride/acetonitrile (20:7:13, v/v/v). After initial tests with conventional CCC, the application of CCC in heart-cut recycling mode provided 4,4-dimethyl-substituted sterols with purities of 99 % (Dihydrolanosterol) and 95 % (lanosterol).

Squalene through Its Post-Squalene Metabolites Is a Modulator of Hepatic Transcriptome in Rabbits.[Pubmed:35456988]

Int J Mol Sci. 2022 Apr 10;23(8):4172.

Squalene is a natural bioactive triterpene and an important intermediate in the biosynthesis of sterols. To assess the effect of this compound on the hepatic transcriptome, RNA-sequencing was carried out in two groups of male New Zealand rabbits fed either a diet enriched with 1% sunflower oil or the same diet with 0.5% squalene for 4 weeks. Hepatic lipids, lipid droplet area, squalene, and sterols were also monitored. The Squalene administration downregulated 9 transcripts and upregulated 13 transcripts. The gene ontology of transcripts fitted into the following main categories: transporter of proteins and sterols, lipid metabolism, lipogenesis, anti-inflammatory and anti-cancer properties. When the results were confirmed by RT-qPCR, rabbits receiving squalene displayed significant hepatic expression changes of LOC100344884 (PNPLA3), GCK, TFCP2L1, ASCL1, ACSS2, OST4, FAM91A1, MYH6, LRRC39, LOC108176846, GLT1D1 and TREH. A squalene-enriched diet increased hepatic levels of squalene, lanosterol, Dihydrolanosterol, lathosterol, zymostenol and desmosterol. Strong correlations were found among specific sterols and some squalene-changed transcripts. Incubation of the murine AML12 hepatic cell line in the presence of lanosterol, Dihydrolanosterol, zymostenol and desmosterol reproduced the observed changes in the expressions of Acss2, Fam91a1 and Pnpla3. In conclusion, these findings indicate that the squalene and post-squalene metabolites play important roles in hepatic transcriptional changes required to protect the liver against malfunction.

A comparison of the bacterial CYP51 cytochrome P450 enzymes from Mycobacterium marinum and Mycobacterium tuberculosis.[Pubmed:35346833]

J Steroid Biochem Mol Biol. 2022 Jul;221:106097.

Members of the CYP51 family of cytochrome P450 enzymes are classified as sterol demethylases involved in the metabolic formation of cholesterol and related derivatives. The CYP51 enzyme from Mycobacterium marinum was studied and compared to its counterpart from Mycobacterium tuberculosis to determine the degree of functional conservation between them. Spectroscopic analyses of substrate and inhibitor binding of the purified CYP51 enzymes from M. marinum and M. tuberculosis were performed. The catalytic oxidation of lanosterol and related steroids was investigated. M. marinum CYP51 was structurally characterized by X-ray crystallography. The CYP51 enzyme of M. marinum is sequentially closely related to CYP51B1 from M. tuberculosis. However, differences in the heme spin state of each enzyme were observed upon the addition of steroids and other ligands. Both enzymes displayed different binding properties to those reported for the CYP51-Fdx fusion protein from the bacterium Methylococcus capsulatus. The enzymes were able to oxidatively demethylate lanosterol to generate 14-demethylanosterol, but no products were detected for the related species Dihydrolanosterol and eburicol. The crystal structure of CYP51 from M. marinum in the absence of added substrate but with a Bis-Tris molecule within the active site was resolved. The CYP51 enzyme of M. marinum displays differences in how steroids and other ligands bind compared to the M. tuberculosis enzyme. This was related to structural differences between the two enzymes. Overall, both of these CYP51 enzymes from mycobacterial species displayed significant differences to the CYP51 enzymes of eukaryotic species and the bacterial CYP51-Fdx enzyme of Me. capsulatus.

Dietary squalene modifies plasma lipoproteins and hepatic cholesterol metabolism in rabbits.[Pubmed:34291245]

Food Funct. 2021 Sep 7;12(17):8141-8153.

To evaluate the effects of squalene, the main unsaponifiable component of virgin olive oil, on lipid metabolism, two groups of male New Zealand rabbits were fed a 1% sunflower oil-enriched regular diet or the same diet containing 0.5% squalene for 4 weeks. Plasma triglycerides, total- and HDL-cholesterol and their lipoproteins were assayed. Analyses of hepatic lipid droplets, triglycerides, total- and non-esterified cholesterol, squalene, protein and gene expression, and cholesterol precursors were carried out. In the jejunum, the squalene content and mRNA and protein APOB expressions were measured. Finally, we studied the effect of cholesterol precursors in AML12 cells. Squalene administration significantly increased plasma total cholesterol, mainly carried as non-esterified cholesterol in IDL and large LDL, and corresponded to an increased number of APOB100-containing particles without accumulation of triglycerides and decreased reactive oxygen species. Despite no significant changes in the APOB content in the jejunum, the latter displayed increased APOB mRNA and squalene levels. Increases in the amounts of non-esterified cholesterol, squalene, lanosterol, Dihydrolanosterol, lathosterol, cholestanol, zymostenol, desmosterol and caspase 1 were also observed in the liver. Incubation of AML12 cells in the presence of lanosterol increased caspase 1. In conclusion, squalene administration in rabbits increases the number of modified APOB-containing lipoproteins, and hepatic cholesterol biosynthesis is linked to caspase 1 probably through lanosterol.

Decreased caveolae in AGPAT2 lacking adipocytes is independent of changes in cholesterol or sphingolipid levels: A whole cell and plasma membrane lipidomic analysis of adipogenesis.[Pubmed:33989739]

Biochim Biophys Acta Mol Basis Dis. 2021 Sep 1;1867(9):166167.

BACKGROUND: Adipocytes from lipodystrophic Agpat2(-/-) mice have impaired adipogenesis and fewer caveolae. Herein, we examined whether these defects are associated with changes in lipid composition or abnormal levels of caveolae-associated proteins. Lipidome changes were quantified in differentiated Agpat2(-/-) adipocytes to identify lipids with potential adipogenic roles. METHODS: Agpat2(-/-) and wild type brown preadipocytes were differentiated in vitro. Plasma membrane was purified by ultracentrifugation. Number of caveolae and caveolae-associated proteins, as well as sterol, sphingolipid, and phospholipid lipidome were determined across differentiation. RESULTS: Differentiated Agpat2(-/-) adipocytes had decreased caveolae number but conserved insulin signaling. Caveolin-1 and cavin-1 levels were equivalent between Agpat2(-/-) and wild type adipocytes. No differences in PM cholesterol and sphingolipids abundance were detected between genotypes. Levels of phosphatidylserine at day 10 of differentiation were increased in Agpat2(-/-) adipocytes. Wild type adipocytes had increased whole cell triglyceride, diacylglycerol, phosphatidylglycerol, phosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine, and trihexosyl ceramide, and decreased 24,25-Dihydrolanosterol and sitosterol, as a result of adipogenic differentiation. By contrast, adipogenesis did not modify whole cell neutral lipids but increased lysophosphatidylcholine, sphingomyelin, and trihexosyl ceramide levels in Agpat2(-/-) adipocytes. Unexpectedly, adipogenesis decreased PM levels of main phospholipids in both genotypes. CONCLUSION: In Agpat2(-/-) adipocytes, decreased caveolae is not associated with changes in PM cholesterol nor sphingolipid levels; however, increased PM phosphatidylserine content may be implicated. Abnormal lipid composition is associated with the adipogenic abnormalities of Agpat2 -/- adipocytes but does not prevent insulin signaling.

Disturbances of brain cholesterol metabolism: A new excitotoxic process associated with status epilepticus.[Pubmed:33774180]

Neurobiol Dis. 2021 Jul;154:105346.

The understanding of the excitotoxic processes associated with a severe status epilepticus (SE) is of major importance. Changes of brain cholesterol homeostasis is an emerging candidate for excitotoxicity. We conducted an overall analysis of the cholesterol homeostasis both (i) in fluids and tissues from patients with SE: blood (n = 63, n = 87 controls), CSF (n = 32, n = 60 controls), and post-mortem brain tissues (n = 8, n = 8 controls) and (ii) in a mouse model of SE induced by an intrahippocampal injection of kainic acid. 24-hydroxycholesterol levels were decreased in kainic acid mouse hippocampus and in human plasma and post-mortem brain tissues of patients with SE when compared with controls. The decrease of 24-hydroxycholesterol levels was followed by increased cholesterol levels and by an increase of the cholesterol synthesis. Desmosterol levels were higher in human CSF and in mice and human hippocampus after SE. Lanosterol and Dihydrolanosterol levels were higher in plasma from SE patients. Our results suggest that a CYP46A1 inhibition could occur after SE and is followed by a brain cholesterol accumulation. The excess of cholesterol is known to be excitotoxic for neuronal cells and may participate to neurological sequelae observed after SE. This study highlights a new pathophysiological pathway involved in SE excitotoxicity.

Effect of dietary macronutrients on intestinal cholesterol absorption and endogenous cholesterol synthesis: a randomized crossover trial.[Pubmed:33744041]

Nutr Metab Cardiovasc Dis. 2021 May 6;31(5):1579-1585.

BACKGROUND AND AIMS: Extensive research showed a diurnal rhythm of endogenous cholesterol synthesis, whereas recent research reported no diurnal rhythm of intestinal cholesterol absorption in males who consumed low-fat meals. Little is known about the acute effect of macronutrient consumption on cholesterol metabolism, and hence if meal composition may explain this absence of rhythmicity in cholesterol absorption. Therefore, we examined the effect of a high-fat, high-carbohydrate, and high-protein meal on postprandial intestinal cholesterol absorption and endogenous cholesterol synthesis in apparently healthy overweight and slightly obese males. METHODS AND RESULTS: Eighteen males consumed in random order an isoenergetic high-fat, high-carbohydrate, and high-protein meal on three occasions. Serum total cholesterol concentrations, cholesterol absorption markers (campesterol, cholestanol, and sitosterol), and cholesterol synthesis intermediates (7-dehydrocholesterol, 7-dehydrodesmosterol, desmosterol, Dihydrolanosterol, lanosterol, lathosterol, zymostenol, and zymosterol) were measured at baseline (T0) and 240 min postprandially (T240). Meal consumption did not significantly change total cholesterol concentrations and cholesterol absorption marker levels (all p > 0.05). Serum levels of 7-dehydrocholesterol, lanosterol, lathosterol, zymostenol, and zymosterol decreased significantly between T0 and T240 (all p < 0.05). These decreases were not significantly different between the three meals (all p > 0.05), except for a larger decrease in Dihydrolanosterol levels after the high-fat versus the high-carbohydrate meal (p = 0.009). CONCLUSION: The high-fat, high-carbohydrate, and high-protein meal did not significantly influence postprandial intestinal cholesterol absorption. Several cholesterol synthesis intermediates decreased postprandially, but the individual macronutrients did not differentially affect these intermediates, except for a possible effect on Dihydrolanosterol. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03139890.

Serum 4beta-hydroxycholesterol increases during fluconazole treatment.[Pubmed:33201347]

Eur J Clin Pharmacol. 2021 May;77(5):659-669.

PURPOSE: The antifungal drugs ketoconazole and itraconazole reduce serum concentrations of 4beta-hydroxycholesterol, which is a validated marker for hepatic cytochrome P450 (CYP) 3A4 activity. We tested the effect of another antifungal triazole agent, fluconazole, on serum concentrations of different sterols and oxysterols within the cholesterol metabolism to see if this inhibitory reaction is a general side effect of azole antifungal agents. METHODS: In a prospective, double-blind, placebo-controlled, two-way crossover design, we studied 17 healthy subjects (nine men, eight women) who received 400 mg fluconazole or placebo daily for 8 days. On day 1 before treatment and on day 8 after the last dose, fasting blood samples were collected. Serum cholesterol precursors and oxysterols were measured by gas chromatography-mass spectrometry-selected ion monitoring and expressed as the ratio to cholesterol (R_sterol). RESULTS: Under fluconazole treatment, serum R_lanosterol and R_24,25-Dihydrolanosterol increased significantly without affecting serum cholesterol or metabolic downstream markers of hepatic cholesterol synthesis. Serum R_4beta-, R_24S-, and R_27-hydroxycholesterol increased significantly. CONCLUSION: Fluconazole inhibits the 14alpha-demethylation of lanosterol and 24,25-Dihydrolanosterol, regulated by CYP51A1, without reduction of total cholesterol synthesis. The increased serum level of R_4beta-hydroxycholesterol under fluconazole treatment is in contrast to the reductions observed under ketoconazole and itraconazole treatments. The question, whether this increase is caused by induction of CYP3A4 or by inhibition of the catabolism of 4beta-hydroxycholesterol, must be answered by mechanistic in vitro and in vivo studies comparing effects of various azole antifungal agents on hepatic CYP3A4 activity.

Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation.[Pubmed:33177619]

Cell Death Differ. 2021 Apr;28(4):1301-1316.

Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann-Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and Dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRalpha and LXRbeta in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.

Simplified LC-MS Method for Analysis of Sterols in Biological Samples.[Pubmed:32916848]

Molecules. 2020 Sep 9;25(18):4116.

We developed a simple and robust liquid chromatographic/mass spectrometric method (LC-MS) for the quantitative analysis of 10 sterols from the late part of cholesterol synthesis (zymosterol, dehydrolathosterol, 7-dehydrodesmosterol, desmosterol, zymostenol, lathosterol, FFMAS, TMAS, lanosterol, and Dihydrolanosterol) from cultured human hepatocytes in a single chromatographic run using a pentafluorophenyl (PFP) stationary phase. The method also avails on a minimized sample preparation procedure in order to obtain a relatively high sample throughput. The method was validated on 10 sterol standards that were detected in a single chromatographic LC-MS run without derivatization. Our developed method can be used in research or clinical applications for disease-related detection of accumulated cholesterol intermediates. Disorders in the late part of cholesterol synthesis lead to severe malformation in human patients. The developed method enables a simple, sensitive, and fast quantification of sterols, without the need of extended knowledge of the LC-MS technique, and represents a new analytical tool in the rising field of cholesterolomics.

Keywords:

Dihydrolanosterol,911660-54-3,Natural Products, buy Dihydrolanosterol , Dihydrolanosterol supplier , purchase Dihydrolanosterol , Dihydrolanosterol cost , Dihydrolanosterol manufacturer , order Dihydrolanosterol , high purity Dihydrolanosterol

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: