Ardisiacrispin B

CAS# 112766-96-8

Ardisiacrispin B

Catalog No. BCN8823----Order now to get a substantial discount!

Product Name & Size Price Stock
Ardisiacrispin B: 5mg $213 In Stock
Ardisiacrispin B: 10mg Please Inquire In Stock
Ardisiacrispin B: 20mg Please Inquire Please Inquire
Ardisiacrispin B: 50mg Please Inquire Please Inquire
Ardisiacrispin B: 100mg Please Inquire Please Inquire
Ardisiacrispin B: 200mg Please Inquire Please Inquire
Ardisiacrispin B: 500mg Please Inquire Please Inquire
Ardisiacrispin B: 1000mg Please Inquire Please Inquire

Quality Control of Ardisiacrispin B

Number of papers citing our products

Chemical structure

Ardisiacrispin B

3D structure

Chemical Properties of Ardisiacrispin B

Cas No. 112766-96-8 SDF Download SDF
PubChem ID 194981 Appearance Powder
Formula C53H86O22 M.Wt 1075.3
Type of Compound Triterpenoids Storage Desiccate at -20°C
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
Chemical Name (2R,4S,5R,8R,10S,13R,14R,18R,20S)-10-[(2S,3R,4S,5S)-5-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-4-hydroxy-3-[(2S,3R,4S,5S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-2-hydroxy-4,5,9,9,13,20-hexamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracosane-20-carbaldehyde
SMILES CC1C(C(C(C(O1)OC2C(C(C(OC2OC3COC(C(C3O)OC4C(C(C(C(O4)CO)O)O)O)OC5CCC6(C(C5(C)C)CCC7(C6CCC89C7(CC(C1(C8CC(CC1)(C)C=O)CO9)O)C)C)C)CO)O)O)O)O)O
Standard InChIKey ZDIHSHLFPFGAGP-GRWMUYEGSA-N
Standard InChI InChI=1S/C53H86O22/c1-23-32(58)36(62)39(65)43(69-23)75-42-38(64)34(60)25(19-55)71-46(42)72-26-20-67-45(41(35(26)61)74-44-40(66)37(63)33(59)24(18-54)70-44)73-31-10-11-49(5)27(47(31,2)3)8-12-50(6)28(49)9-13-53-29-16-48(4,21-56)14-15-52(29,22-68-53)30(57)17-51(50,53)7/h21,23-46,54-55,57-66H,8-20,22H2,1-7H3/t23-,24?,25+,26-,27-,28+,29+,30+,31-,32-,33+,34+,35-,36+,37-,38-,39+,40+,41+,42+,43-,44-,45-,46-,48-,49-,50+,51-,52?,53?/m0/s1
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
We recommend that you prepare and use the solution on the same day. However, if the test schedule requires, the stock solutions can be prepared in advance, and the stock solution must be sealed and stored below -20℃. In general, the stock solution can be kept for several months.
Before use, we recommend that you leave the vial at room temperature for at least an hour before opening it.
About Packaging 1. The packaging of the product may be reversed during transportation, cause the high purity compounds to adhere to the neck or cap of the vial.Take the vail out of its packaging and shake gently until the compounds fall to the bottom of the vial.
2. For liquid products, please centrifuge at 500xg to gather the liquid to the bottom of the vial.
3. Try to avoid loss or contamination during the experiment.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other couriers with RT, or blue ice upon request.

Source of Ardisiacrispin B

The herbs of Ardisia crenata.

Biological Activity of Ardisiacrispin B

DescriptionArdisiacrispin B displays cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death.

Protocol of Ardisiacrispin B

Cell Research

A naturally occuring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death.[Pubmed: 29747757 ]

Phytomedicine. 2018 Apr 1;43:78-85.

Multidrug resistance of cancer cells constitutes a serious problem in chemotherapy and a challenging issue in the discovery of new cytotoxic drugs. Many saponins are known to display anti-cancer effects. In this study, the cytotoxicity and the modes of action of a naturally occuring oleanane-type tritepene saponin, Ardisiacrispin B isolated from the fruit of Ardisia kivuensis Taton (Myrsinaceae) was evaluated on a panel of 9 cancer cell lines including various sensitive and drug-resistant phenotypes.
METHODS AND RESULTS:
Resazurin reduction assay was used to evaluate cytotoxicity and ferroptotic cell death of samples; caspase-Glo assay was used to detect the activation of caspases in CCRF-CEM leukemia cells. Flow cytometry was used for cell cycle analysis and detection of apoptotic cells by annexin V/PI staining, analysis of mitochondrial membrane potential (MMP) and measurement of reactive oxygen species (ROS). Ardisiacrispin B displayed significant cytotoxic effects in the 9 tested cancer cell lines with IC50 values below 10 µM. The IC50 values ranges were 1.20 µM (towards leukemia CCRF-CEM cells) to 6.76 µM [against heptocarcinoma HepG2 cells] for Ardisiacrispin B and 0.02 µM (against CCRF-CEM cells) to 122.96 µM (against resistant CEM/ADR5000 leukemia cells) for doxorubicin. Collateral sensitivity of resistant HCT116p53-/- colon adenocarcinoma cells to ardisiacripsin B was observed. Ardisiacrispin B induced apoptosis in CCRF-CEM cells via activation of inititator caspases 8 and 9 and effector caspase 3/7, alteration of MMP and increase in ROS production. Ferroptosis also contributed to the cytotoxicity of Ardisiacrispin B.
CONCLUSIONS:
The studied oleanane-type triterpene saponin is a good cytotoxic molecule that deserve more detailed exploration in the future, to develop novel cytotoxic drugs to combat both sensitive and drug-resistant cancers.

Structure Identification
Phytochemistry. 1994 Nov;37(5):1389-96.

Triterpenoid saponins from Ardisia crenata.[Pubmed: 7765756 ]


METHODS AND RESULTS:
Two novel triterpenoid saponins, ardisicrenoside A [3 beta-O-(alpha-L-rhamnopyranosyl-(1-->2)-[beta-D-glucopyranosyl- (1-->4)-[beta-D-glucopyranosyl-(1-->2)]-alpha-L-arabinopyranosyl)- 13 beta,28-epoxy-16 alpha,30-oleananediol] and ardisicrenoside B [3 beta-O-(beta-D-xylopyranosyl-(1-->2)-[beta-D- glucopyranosyl-(1-->4)-[beta-D-glucopyranosyl-(1-->2)]- alpha-L-arabinopyranosyl)-13 beta,28-epoxy-16 alpha,30-oleananediol] were isolated from the roots of Ardisia crenata. Two known triterpenoid saponins, ardisiacrispins A and B were also isolated from this source. Their structures were determined mainly by 2D NMR (COSY, HOHAHA, HETCOR, HMBC and ROESY) experiments.
CONCLUSIONS:
The aglycones are the new 13 beta,28-epoxy-3 beta,16 alpha,30-oleananetriol for ardisicrenoside A and ardisicrenoside B.

Ardisiacrispin B Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

Ardisiacrispin B Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Preparing Stock Solutions of Ardisiacrispin B

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 0.93 mL 4.6499 mL 9.2997 mL 18.5995 mL 23.2493 mL
5 mM 0.186 mL 0.93 mL 1.8599 mL 3.7199 mL 4.6499 mL
10 mM 0.093 mL 0.465 mL 0.93 mL 1.8599 mL 2.3249 mL
50 mM 0.0186 mL 0.093 mL 0.186 mL 0.372 mL 0.465 mL
100 mM 0.0093 mL 0.0465 mL 0.093 mL 0.186 mL 0.2325 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
DRURY University
DRURY University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris
Deemed University
Deemed University
Auckland University
Auckland University
The University of Tokyo
The University of Tokyo
Korea University
Korea University
Featured Products
New Products
 

References on Ardisiacrispin B

Cytotoxic triterpenoid saponins from Lysimachia foenum-graecum.[Pubmed:28173950]

Phytochemistry. 2017 Apr;136:165-174.

Eleven oleanane-type triterpenoid saponins, foegraecumosides A-K, and eight known ones, were isolated from the aerial parts of Lysimachia foenum-graecum. Their structures were elucidated by spectroscopic data analyses and chemical methods. All isolated saponins were evaluated for their cytotoxicity against four human cancer cell lines (NCI-H460, MGC-803, HepG2, and T24). Seven saponins containing the aglycone cyclamiretin A exhibited moderate cytotoxicity against all tested human cancer cell lines, with IC50 values of 9.3-24.5 muM. Simultaneously, the cytotoxic activities of foegraecumosides A and B, lysichriside A, ardisiacrispins A and B, cyclaminorin, and 3-O-alpha-L-rhamnopyranosyl-(1 --> 2)-beta-d-glucopyranosyl-(1 --> 4)-alpha-l-arabinopyranosyl-cyclamiretin A were tested on drug-resistant lung cancer cell lines (A549 and A549/CDDP, respectively). Ardisiacrispin B displayed moderate cytotoxicity against A549/CDDP, with an IC50 value of 8.7 muM and a resistant factor (RF) of 0.9.

A simple and rapid method to identify and quantitatively analyze triterpenoid saponins in Ardisia crenata using ultrafast liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry.[Pubmed:25459939]

J Pharm Biomed Anal. 2015 Jan;102:400-8.

Ardisia plant species have been used in traditional medicines, and their bioactive constituents of 13,28-epoxy triterpenoid saponins have excellent biological activities for new drug development. In this study, a fast and simple method based on ultrafast liquid chromatography coupled to electrospray ionization mass spectrometry (UFLC-MS) was developed to simultaneously identify and quantitatively analyze triterpenoid saponins in Ardisia crenata extracts. In total, 22 triterpenoid saponins, including two new compounds, were identified from A. crenata. The method exhibited good linearity, precision and recovery for the quantitative analysis of eight marker saponins. A relative quantitative method was also developed using one major saponin (Ardisiacrispin B) as the standard to break through the choke-point of the lack of standards in phytochemical analysis. The method was successfully applied to quantitatively analyze saponins in commercially available plant samples. This study describes the first systematic analysis of 13,28-epoxy-oleanane-type triterpenoid saponins in the genus Ardisia using LC-ESI-MS. The results can provide the chemical support for further biological studies, phytochemotaxonomical studies and quality control of triterpenoid saponins in medicinal plants of the genus Ardisia.

Two new resorcinol derivatives with strong cytotoxicity from the roots of Ardisia brevicaulis Diels.[Pubmed:21162003]

Chem Biodivers. 2010 Dec;7(12):2901-7.

Two new resorcinol derivatives, 4-hydroxy-2-methoxy-6-[(8Z)-pentadec-8-en-1-yl]phenyl acetate (1) and 4-hydroxy-2-methoxy-6-pentadecylphenyl acetate (2), together with known compounds ardisiphenol D (3), 5-tridecylresorcinol (4), 5-pentadecylresorcinol (5), 5-[(8Z)-pentadec-8-en-1-yl]resorcinol (6), belamcandaquinones C and D (7 and 8, resp.), ardisicrenoside A, Ardisiacrispin B, (22E)-24-ethyl-5alpha-cholesta-7,22-dien-3-one, and (22E)-24-ethyl-5alpha-cholesta-7,22-dien-3beta-ol were isolated from the MeOH extract of the roots of Ardisia brevicaulis Diels. Their structures were determined by spectroscopic analysis including ESI- and EI-MS, and NMR data. Cytotoxicities of 1-4 against cell lines A549, MCF-7, and PANC-1 were tested in vitro by the MTT (=3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) method. Compounds 1-4 showed cytotoxic activity against all cell lines stronger than that of cisplatin against A549.

Two new triterpenoid saponins cytotoxic to human glioblastoma U251MG cells from Ardisia pusilla.[Pubmed:19774606]

Chem Biodivers. 2009 Sep;6(9):1443-52.

Two new triterpenoid saponins, ardipusillosides IV and V (1 and 2, resp.), together with one known saponin, Ardisiacrispin B(3), were isolated from the whole plants of Ardisia pusilla A. DC. Their structures were deduced by extensive spectral analysis and chemical evidences. Compound 1 contains a glycosylated glycerol residue which is a very rare structural feature among triterpenoid glycosides and has been so far found only in the genus Ardisia. All the saponins exhibited significant cytotoxicity against human glioblastoma U251MG cells, but did not affect the growth of primary cultured human astrocytes.

Triterpenoid saponins from Ardisia pusilla and their cytotoxic activity.[Pubmed:19039733]

Planta Med. 2009 Jan;75(1):70-5.

Three new triterpenoid saponins 3, 4 and 5, together with two known saponins, Ardisiacrispin B (1) and ardisiacrispin A (2), were isolated from the whole plants of Ardisia pusilla A. DC. Their structures were elucidated by extensive spectral analysis and chemical evidence. Compound 3 is a hexaglycoside with a 13,28-epoxyoleanane type aglycone, while both 4 and 5 are triterpenoid tetraglycosides related to the olean-12-ene skeleton. Saponins 1-4 exhibited significant cytotoxicity against human glioblastoma U251MG cells, but did not affect the growth of primary cultured human astrocytes.

[Chemical constituents from roots of Ardisia punctata].[Pubmed:16780159]

Zhongguo Zhong Yao Za Zhi. 2006 Apr;31(7):562-5.

OBJECTIVE: To study the chemical constituents from the roots of Ardisia punctata. METHOD: Compounds were isolated by chromatographic techniques on silica gel and Rp-HPLC column. Their structures were elucidated by chemical and spectroscopic methods. RESULT: Twelve compounds were identified as 3-hydroxy-5-tridecyl-methyl phenyl ether (1), 5-pentadecyl-1, 3-benzenediol (2), 2-methoxy-6-tridecyl-1, 4-benzoquinone (3), 2-methoxy-6-pentadecyl-1, 4-benzoquinone (4), glutinol (5), ardisicrenoside A (6), Ardisiacrispin B (7), 24-ethyl-5a-cholesta-7, 22(E)-dien-3-one (8), 24-ethyl-5alpha-cholesta-7, 22(E)-dien-3beta-ol (9), daucosterol (10), vanillin acid (11), tetratriacontanoic acid (12). CONCLUSION: All the compounds were obtained from this plant for the first time.

Cytotoxic saponins from New Zealand Myrsine species.[Pubmed:7807121]

J Nat Prod. 1994 Oct;57(10):1354-60.

The observed biological activity in two New Zealand Myrsine species has been shown to be due to the presence of triterpene saponins. From Myrsine australis a series of eight oleanane-type saponins was obtained, with compounds 1-4 and 7 and 8 being novel. Also isolated were ardisiacrispin A [5] and Ardisiacrispin B [6]. The structures of the new compounds were determined by chemical and spectroscopic techniques. Extracts of Myrsine salicina yielded only one saponin, 5. Saponins 1-8 were shown to be combinations of four oleanane triterpenes bonded to beta-D-xylp(1-->2)-beta-D-glcp(1-->4)-[beta-D-glcp(1-->2)]-alpha-L -arap (compounds 1, 3, 5, 7) and this same tetrasaccharide with alpha-L-rhap replacing the beta-D-xylp unit (compounds 2, 4, 6, 8).

Keywords:

Ardisiacrispin B,112766-96-8,Natural Products, buy Ardisiacrispin B , Ardisiacrispin B supplier , purchase Ardisiacrispin B , Ardisiacrispin B cost , Ardisiacrispin B manufacturer , order Ardisiacrispin B , high purity Ardisiacrispin B

Online Inquiry for:

      Fill out the information below

      • Size:Qty: - +

      * Required Fields

                                      Result: