Search Site
Home >> Research Area >>Nature Products >> 16-Nor-15-oxodehydroabietic acid
16-Nor-15-oxodehydroabietic acid

16-Nor-15-oxodehydroabietic acid

Catalog No. BCN3943
Size Price Stock
20mg $298 In stock
Related Products

Organizitions Citing Our Products recently


Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris

Quality Control of 16-Nor-15-oxodehydroabietic acid

Chemical structure

16-Nor-15-oxodehydroabietic acid

16-Nor-15-oxodehydroabietic acid Dilution Calculator

Concentration (start)
Volume (start)
Concentration (final)
Volume (final)


16-Nor-15-oxodehydroabietic acid Molarity Calculator



Chemical Properties of 16-Nor-15-oxodehydroabietic acid

Cas No. 200813-31-6 SDF Download SDF
SMILES CC(=O)c1ccc2c(c1)CC[C@@H]3[C@@]2(CCC[C@@]3(C)C(=O)O)C
Standard InChI InChI=1S/C19H24O3/c1-12(20)13-5-7-15-14(11-13)6-8-16-18(15,2)9-4-10-19(16,3)17(21)22/h5,7,11,16H,4,6,8-10H2,1-3H3,(H,21,22)/t16-,18-,19-/m1/s1
Type of Compound Diterpenoids Appearance Powder
Formula C19H24O3 M.Wt 300.4
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other courier with RT , or blue ice upon request.

Preparing Stock Solutions of 16-Nor-15-oxodehydroabietic acid

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 3.3289 mL 16.6445 mL 33.2889 mL 66.5779 mL 83.2224 mL
5 mM 0.6658 mL 3.3289 mL 6.6578 mL 13.3156 mL 16.6445 mL
10 mM 0.3329 mL 1.6644 mL 3.3289 mL 6.6578 mL 8.3222 mL
50 mM 0.0666 mL 0.3329 mL 0.6658 mL 1.3316 mL 1.6644 mL
100 mM 0.0333 mL 0.1664 mL 0.3329 mL 0.6658 mL 0.8322 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Preparation of 16-Nor-15-oxodehydroabietic acid

This product is isolated and purified from the herbs of Pinus massoniana

References on 16-Nor-15-oxodehydroabietic acid

Association between serum uric acid level and renal arteriolar hyalinization in individuals without chronic kidney disease.[Pubmed: 29024864]

Recent studies have reported an association between serum uric acid (SUA) and renal arteriolar changes in patients with chronic kidney disease (CKD). However, the association in individuals without CKD remains unclear. In this study, we investigated the relationship between SUA and renal arteriolar lesions in individuals without CKD from our living kidney donor cohort.

Effect of calcination temperature of a copper ferrite synthesized by a sol-gel method on its structural characteristics and performance as Fenton catalyst to remove gallic acid from water.[Pubmed: 29024859]

A copper ferrite synthesized by a sol-gel combustion method was calcined at different temperatures up to 800°C, determining changes in its structural characteristics and magnetic measurements and studying its catalytic performance in gallic acid removal by Fenton reaction. The main objective was to study the effect of the calcination temperature of copper ferrite on its crystalline phase formation and transformation, activity and metal ion leaching. The cubic-to-tetragonal transformation of the spinel occurred via its reaction with the CuO phase, displacing Fe3+ ions in B (octahedral) sites out of the spinel structure by the following reaction: 2Fe3+B+3CuO→Fe2O3+3Cu2+B. The catalysts showed superparamagnetic or substantial superparamagnetic behaviour. At higher calcination temperatures, catalyst activity was lower, and Cu ion leaching was markedly decreased. There was no Fe ion leaching with any catalyst. The as-prepared catalyst showed better catalytic performance than a commercial copper ferrite. Leached Cu ions acted as homogeneous catalysts, and their contribution to the overall removal mechanism was examined. Cu2O present in the as-prepared catalysts made only a small contribution to their activity. Finally, the reutilization of various catalysts was studied by performing different catalytic cycles.

Dimerization and oxidation of tryptophan in UV-A photolysis sensitized by kynurenic acid.[Pubmed: 29024806]

Photoinduced generation of radicals in the eye lens may play an important role in the modification of proteins, leading to their coloration, aggregation, and insolubilization. The radicals can be formed via the reactions of photoexcited endogenous chromophores of the human lens with lens proteins, in particular with tryptophan residues. In the present work we studied the reactions induced by UV-A (315-400nm) light between kynurenic acid (KNA), an effective photosensitizer present in the lens, and N-acetyl-L-tryptophan (NTrpH) under aerobic and anaerobic conditions. Our results show that the reaction mechanism strongly depends on the presence of oxygen in solution. Under aerobic conditions, the generation of singlet oxygen is the major channel of the effective NTrpH oxidation. In argon-bubbled solutions, the quenching of triplet KNA by NTrpH results in the formation of KNA•- and NTrp• radicals. Under laser pulse irradiation, when the radical concentration is high, the main pathway of the radical decay is the back electron transfer with the restoration of initial reagents. Other reactions include (i) the radical combination yielding NTrp dimers and (ii) the oxygen atom transfer from KNA•- to NTrp• with the formation of oxidized NTrp species and deoxygenated KNA products. In continuous-wave photolysis, even trace amounts of molecular oxygen are sufficient to oxidize the majority of KNA•- radicals with the rate constant of (2.0±0.2)×109M-1s-1, leading to the restoration of KNA and the formation of superoxide radical O2•-. The latter reacts with NTrp• via either the radical combination to form oxidized NTrp (minor pathway), or the electron transfer to restore NTrpH in the ground state (major pathway). As the result, the quantum yields of the starting compound decomposition under continuous-wave anaerobic photolysis are rather low: 1.6% for NTrpH and 0.02% for KNA. The photolysis of KNA with alpha-crystallin yields the same deoxygenated KNA products as the photolysis of KNA with NTrpH, indicating the similarity of the photolysis mechanisms. Thus, inside the eye lens KNA can sensitize both protein photooxidation and protein covalent cross-linking with the minor self-degradation. This may play an important role in the lens protein modifications during the normal aging and cataract development.

Biochemical, biological and molecular characterization of an L-Amino acid oxidase (LAAO) purified from Bothrops pictus Peruvian snake venom.[Pubmed: 29024770]

An L-amino acid oxidase from Peruvian Bothrops pictus (Bpic-LAAO) snake venom was purified using a combination of size-exclusion and ion-exchange chromatography. Bpic-LAAO is an homodimeric glycosylated flavoprotein with molecular mass of ∼65 kDa under reducing conditions and ∼132 kDa in its native form as analyzed by SDS-PAGE and gel filtration chromatography, respectively. N-terminal amino acid sequencing showed highly conserved residues in a glutamine-rich motif related to binding substrate. The enzyme exhibited optimal activity towards L-Leu at pH 8.5, and like other reported SV-LAAOs, it is stable until 55 °C. Kinetic studies showed that the cations Ca2+, Mg2+ and Mn2+ did not alter Bpic-LAAO activity; however, Zn2+ is an inhibitor. Some reagents such as β-mercaptoethanol, glutathione and iodoacetate had inhibitory effect on Bpic-LAAO activity, but PMSF, EDTA and glutamic acid did not affect its activity. Regarding the biological activities of Bpic-LAAO, this enzyme induced edema in mice (MED = 7.8 μg), and inhibited human platelet aggregation induced by ADP in a dose-dependent manner and showed antibacterial activity on Gram (+) and Gram (-) bacteria. Bpic-LAAO cDNA of 1494 bp codified a mature protein with 487 amino acid residues comprising a signal peptide of 11 amino acids. Finally, the phylogenetic tree obtained with other sequences of LAAOs, evidenced its similarity to other homologous enzymes, showing two well-established monophyletic groups in Viperidae and Elapidae families. Bpic-LAAO is evolutively close related to LAAOs from B. jararacussu, B. moojeni and B. atrox, and together with the LAAO from B. pauloensis, form a well-defined cluster of the Bothrops genus.


16-Nor-15-oxodehydroabietic acid ,200813-31-6,Nature Products, supplier, inhibitor,Antagonist,Blocker,Modulator,Agonist, activators, activates, potent, BioCrick

Online Inquiry

Fill out the information below

* Required Fields