Search Site
Home >> Research Area >>Nature Products >> 10(14)-Cadinene-4,5-diol
10(14)-Cadinene-4,5-diol

10(14)-Cadinene-4,5-diol

Catalog No. BCN4223
Size Price Stock
20mg $298 In stock
Related Products

Organizitions Citing Our Products recently

 
 
 

Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris

Quality Control of 10(14)-Cadinene-4,5-diol

Chemical structure

10(14)-Cadinene-4,5-diol

10(14)-Cadinene-4,5-diol Dilution Calculator

Concentration (start)
x
Volume (start)
=
Concentration (final)
x
Volume (final)
 
 
 
C1
V1
C2
V2

calculate

10(14)-Cadinene-4,5-diol Molarity Calculator

Mass
=
Concentration
x
Volume
x
MW*
 
 
 
g/mol

calculate

Chemical Properties of 10(14)-Cadinene-4,5-diol

Cas No. 672336-50-4 SDF Download SDF
Chemical Name (1S,2S,4aR,8S,8aS)-2-methyl-5-methylidene-8-propan-2-yl-1,3,4,4a,6,7,8,8a-octahydronaphthalene-1,2-diol
SMILES CC(C)C1CCC(=C)C2C1C(C(CC2)(C)O)O
Standard InChIKey DQVXKPUFGSPUGZ-YTFOTSKYSA-N
Standard InChI InChI=1S/C15H26O2/c1-9(2)11-6-5-10(3)12-7-8-15(4,17)14(16)13(11)12/h9,11-14,16-17H,3,5-8H2,1-2,4H3/t11-,12-,13-,14-,15-/m0/s1
Type of Compound Sesquiterpenoids Appearance Oil
Formula C15H26O2 M.Wt 238.4
Solubility Soluble in Chloroform,Dichloromethane,Ethyl Acetate,DMSO,Acetone,etc.
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other courier with RT , or blue ice upon request.

Preparing Stock Solutions of 10(14)-Cadinene-4,5-diol

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 4.1946 mL 20.9732 mL 41.9463 mL 83.8926 mL 104.8658 mL
5 mM 0.8389 mL 4.1946 mL 8.3893 mL 16.7785 mL 20.9732 mL
10 mM 0.4195 mL 2.0973 mL 4.1946 mL 8.3893 mL 10.4866 mL
50 mM 0.0839 mL 0.4195 mL 0.8389 mL 1.6779 mL 2.0973 mL
100 mM 0.0419 mL 0.2097 mL 0.4195 mL 0.8389 mL 1.0487 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

Preparation of 10(14)-Cadinene-4,5-diol

This product is isolated and purified from the roots of Acorus calamus L.

References on 10(14)-Cadinene-4,5-diol

Bioactive Constituents from the Whole Plants of Gentianella acuta (Michx.) Hulten.[Pubmed: 28783086]


As a Mongolian native medicine and Ewenki folk medicinal plant, Gentianella acuta has been widely used for the treatment of diarrhea, hepatitis, arrhythmia, and coronary heart disease. In the course of investigating efficacy compounds to treat diarrhea using a mouse isolated intestine tissue model, we found 70% EtOH extract of G. acuta whole plants had an inhibitory effect on intestine contraction tension. Here, nineteen constituents, including five new compounds, named as gentiiridosides A (1), B (2), gentilignanoside A (3), (1R)-2,2,3-trimethyl-4-hydroxymethylcyclopent-3-ene-1-methyl-O-β-d-glucopyranoside (4), and (3Z)-3-hexene-1,5-diol 1-O-α-l-arabinopyranosyl(1→6)-β-d-glucopyranoside (5) were obtained from it. The structures of them were elucidated by chemical and spectroscopic methods. Furthermore, the inhibitory effects on motility of mouse isolated intestine tissue of the above mentioned compounds and other thirteen iridoid- and secoiridoid-type monoterpenes (7-10, 13-16, 18, 19, 21, 22, and 25) previously obtained in the plant were analyzed. As results, new compound 5, some secoiridoid-type monoterpenes 7, 10, 12-14, 16, and 17, as well as 7-O-9'-type lignans 31 and 32 displayed significant inhibitory effect on contraction tension at 40 μM.



C₁₄-polyacetylene glucosides from Codonopsis pilosula.[Pubmed: 26009940]


Seven new C14-polyacetylene glucosides codonopilodiynosides A-G (1-7) were isolated from an aqueous extract of the Codonopsis pilosula roots. Their structures were determined by spectroscopic and chemical methods as (-)-(5S,6E,12E)-tetradeca-6,12-dien-8,10-diyn-1,5,14-triol 5-O-β-D-glucopyranoside (1), (-)-(5S,6E,12E)-tetradeca-6,12-dien-8,10-diyn-1,5,14-triol 5-O-β-D-glucopyranosyl-(1″ → 2')-β-D-glucopyranoside (2), (-)-(5S,6E,12E)-tetradeca-6,12-dien-8,10-diyn-1,5,14-triol 5,14-di-O-β-D-glucopyranoside (3), (-)-(5S,6E)-tetradeca-6-en-8,10-diyn-1,5,14-triol 5-O-β-D-glucopyranoside (4), (-)-(5S,6E,12E)-tetradeca-6,12-dien-8,10-diyn-1,5-diol 5-O-β-D-glucopyranosyl-(1″ → 2')-β-D-glucopyranoside (5), (-)-(6S,4E,12E)-tetradeca-4,12-dien-8,10-diyn-1,6-diol 6-O-β-D-glucopyranosyl-(1″ → 2')-β-D-glucopyranoside (6), and (-)-(5S,6E)-tetradeca-6-en-1,5-epoxy-8,10-diyn-14-ol 14-O-β-D-glucopyranosyl-(1″ → 2')-β-D-glucopyranoside (7), respectively. The absolute configurations of 1-7 were assigned by enzymatic hydrolysis followed by isolation of glucose and aglycones (1a and 4a-7a), and subsequent comparison of specific rotation, TLC, and (1)H NMR data of the glucose with an authentic sugar sample and application of modified Mosher's method based on the MPA determination rule of Δδ(RS) values for 1a and 4a, and Δδ(S) values for 6a. The configuration of 7 was assigned by electronic circular dichroism calculations based on the quantum-mechanical time-dependent density functional theory.



Muurolane-type sesquiterpenes from marine sponge Dysidea cinerea.[Pubmed: 24243694]


Seven new muurolane-type sesquiterpenes, (4R,5R)-muurol-1(6),10(14)-diene-4,5-diol (1), (4R,5R)-muurol-1(6)-ene-4,5-diol (2), (4R,5R,10R)-10-methoxymuurol-1(6)-ene-4,5-diol (3), (4S)-4-hydroxy-1,10-seco-muurol-5-ene-1,10-dione (4), (4R)-4-hydroxy-1,10-seco-muurol-5-ene-1,10-dione (5), (6S,10S)-6,10-dihydroxy-7,8-seco-2,8-cyclo-muurol-4(5),7(11)-diene-12-oic acid (6), and (6R,10S)-6,10-dihydroxy-7,8-seco-2,8-cyclo-muurol-4(5),7(11)-diene-12-oic acid (7) were isolated from the marine sponge Dysidea cinerea. Their structures were determined by the combination of spectroscopic and chemical methods, including 1D-NMR, 2D-NMR, and CD spectra as well as by comparing the NMR data with those reported in the literature.



Toxicity of propargylic alcohols on green alga--Pseudokirchneriella subcapitata.[Pubmed: 22105539]


The present study evaluates the toxicity of 34 propargylic alcohols, including primary, primary homo-, secondary, and tertiary alcohols, based on their effects on phytoplankton. A closed-system algal toxicity test was applied because the closed-system technique presents more realistic concentration-response relationships for the above compounds than the conventional batch tests. The green alga, Pseudokirchneriella subcapitata, was the test organism and final yield and growth rate were chosen as the test endpoints. Among all the propargylic alcohols tested, 1-pentyn-3-ol is the most toxic compound with its EC50 equal to 0.50 mg L(-1), which can be classified as a "R50" compound (very toxic to aquatic organisms, EC50/LC50 < 1 mg L(-1)), following the current practice for classification of chemicals in the European Union (EU). There are several other compounds including 2-decyn-1-ol, 3-decyn-1-ol, 1-hexyn-3-ol, 3-butyn-2-ol, and 3-hexyne-2,5-diol, which deserve more attention for their possible adverse impact on the aquatic environment, because these alcohols can be classified as "R51" compounds (toxic to aquatic organisms, EC50/LC50 between 1 and 10 mg L(-1)). Compared to the base-line toxicity relationship (narcosis QSAR) derived previously, tertiary propargylic alcohols can be identified as nonpolar narcotic chemicals, while secondary alcohols and primary alcohols with low molecular weight generally exhibit obvious excess toxicity in relation to the base-line toxicity. Finally, quantitative structure-activity relationships were established for deriving a preliminary estimation of the toxicity of other propargylic alcohols.



Phytotoxic activity of bibenzyl derivatives from the orchid Epidendrum rigidum.[Pubmed: 16076106]


A whole plant chloroform-methanol extract of the orchid Epidendrum rigidum inhibited radicle growth of Amaranthus hypochondriacus seedlings (IC50 = 300 microg/mL). Bioassay-guided fractionation furnished four phytotoxins, namely, gigantol (1), batatasin III (2), 2,3-dimethoxy-9,10-dihydrophenathrene-4,7-diol (9), and 3,4,9-trimethoxyphenanthrene-2,5-diol (11), along with the known flavonoids apigenin, vitexin, and isovetin and the triterterpenoids 24,24-dimethyl-9,19-cyclolanostane-25-en-3beta-ol (14) and 24-methyl-9,19-cyclolanostane-25-en-3beta-ol (15). Stilbenoids 1, 2, 9, and 11 inhibited radicle growth of A. hypochondriacus with IC50 values of 0.65, 0.1, 0.12, and 5.9 microM, respectively. Foliar application of gigantol (1) at 1 microM to 4 week old seedlings of A. hypochondriacus reduced shoot elongation by 69% and fresh weight accumulation by 54%. Bibenzyls 1 and 2, as well as synthetic analogues 4'-hydroxy-3,3',5-trimethoxybibenzyl (3), 3,3',4',5-tetramethoxybibenzyl (4), 3,4'-dihydroxy-5-methoxybibenzyl (5), 3'-O-methylbatatasin III (6), 3,3',5-trihydroxybibenzyl (7), and 3,4',5-trihydroxybibenzyl (8), were tested for phytotoxicity in axenic cultures of the small aquatic plant Lemna pausicostata. All bibenzyls derivatives except 7 and 8 inhibited growth and increased cellular leakage with IC50 values of 89.9-180 and 89.9-166 microM, respectively. The natural and synthetic bibenzyls showed marginal cytotoxicity on animal cells. The results suggest that orchid bibenzyls may be good lead compounds for the development of novel herbicidal agents.



Kewords:

10(14)-Cadinene-4,5-diol ,672336-50-4,Nature Products, supplier, inhibitor,Antagonist,Blocker,Modulator,Agonist, activators, activates, potent, BioCrick

Online Inquiry

Fill out the information below

* Required Fields

CheckCode: