Search Site
Home >> Research Area >>GPCR/G protein>>NOP Receptor >> [Arg14,Lys15]Nociceptin


Catalog No. BCC5781
Size Price Stock
1mg $241.00 Ship Within 7 Days
Related Products

Organizitions Citing Our Products recently


Calcutta University

University of Minnesota

University of Maryland School of Medicine

University of Illinois at Chicago

The Ohio State University

University of Zurich

Harvard University

Colorado State University

Auburn University

Yale University

Worcester Polytechnic Institute

Washington State University

Stanford University

University of Leipzig

Universidade da Beira Interior

The Institute of Cancer Research

Heidelberg University

University of Amsterdam

University of Auckland
TsingHua University
TsingHua University
The University of Michigan
The University of Michigan
Miami University
Miami University
Jilin University
Jilin University
Fudan University
Fudan University
Wuhan University
Wuhan University
Sun Yat-sen University
Sun Yat-sen University
Universite de Paris
Universite de Paris

Quality Control of [Arg14,Lys15]Nociceptin

Chemical structure


Biological Activity of [Arg14,Lys15]Nociceptin

Highly potent and selective NOP receptor agonist (EC50 = 1 nM). Displays > 875-fold selectivity over opioid receptors (IC50 values are 0.32, 280, > 10000 and 1500 for NOP, μ, δ and κ receptors respectively). Longer lasting and 30-fold more potent than nociceptin in vivo; pronociceptive and inhibits locomotor activity.

[Arg14,Lys15]Nociceptin Dilution Calculator

Concentration (start)
Volume (start)
Concentration (final)
Volume (final)


[Arg14,Lys15]Nociceptin Molarity Calculator



Chemical Properties of [Arg14,Lys15]Nociceptin

Cas No. 236098-40-1 SDF Download SDF
Standard InChI InChI=1S/C82H137N31O22/c1-44(101-63(119)42-100-78(133)65(46(3)115)113-76(131)57(38-48-21-8-5-9-22-48)103-64(120)41-98-62(118)40-99-68(123)49(86)37-47-19-6-4-7-20-47)66(121)104-53(26-16-34-95-80(89)90)70(125)108-52(25-12-15-33-85)74(129)112-59(43-114)77(132)102-45(2)67(122)105-54(27-17-35-96-81(91)92)71(126)106-50(23-10-13-31-83)69(124)109-55(28-18-36-97-82(93)94)72(127)107-51(24-11-14-32-84)73(128)111-58(39-61(88)117)75(130)110-56(79(134)135)29-30-60(87)116/h4-9,19-22,44-46,49-59,65,114-115H,10-18,23-43,83-86H2,1-3H3,(H2,87,116)(H2,88,117)(H,98,118)(H,99,123)(H,100,133)(H,101,119)(H,102,132)(H,103,120)(H,104,121)(H,105,122)(H,106,126)(H,107,127)(H,108,125)(H,109,124)(H,110,130)(H,111,128)(H,112,129)(H,113,131)(H,134,135)(H4,89,90,95)(H4,91,92,96)(H4,93,94,97)/t44-,45-,46+,49-,50-,51-,52-,53-,54-,55-,56-,57-,58-,59-,65-/m0/s1
Formula C82H137N31O22 M.Wt 1909.18
Solubility Soluble to 1 mg/ml in water
Storage Desiccate at -20°C
General tips For obtaining a higher solubility , please warm the tube at 37 ℃ and shake it in the ultrasonic bath for a while.Stock solution can be stored below -20℃ for several months.
Shipping Condition Packaging according to customer requirements(5mg, 10mg, 20mg and more). Ship via FedEx, DHL, UPS, EMS or other courier with RT , or blue ice upon request.

Preparing Stock Solutions of [Arg14,Lys15]Nociceptin

1 mg 5 mg 10 mg 20 mg 25 mg
1 mM 0.5238 mL 2.6189 mL 5.2379 mL 10.4757 mL 13.0946 mL
5 mM 0.1048 mL 0.5238 mL 1.0476 mL 2.0951 mL 2.6189 mL
10 mM 0.0524 mL 0.2619 mL 0.5238 mL 1.0476 mL 1.3095 mL
50 mM 0.0105 mL 0.0524 mL 0.1048 mL 0.2095 mL 0.2619 mL
100 mM 0.0052 mL 0.0262 mL 0.0524 mL 0.1048 mL 0.1309 mL
* Note: If you are in the process of experiment, it's necessary to make the dilution ratios of the samples. The dilution data above is only for reference. Normally, it's can get a better solubility within lower of Concentrations.

References on [Arg14,Lys15]Nociceptin

Quantitative study of [(pF)Phe4,Arg14,Lys15]nociceptin/orphanin FQ-NH2 (UFP-102) at NOP receptors in rat periaqueductal gray slices.[Pubmed: 17976580]

The nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor is a novel member of the opioid receptor family with little affinity for traditional opioids. This receptor and its endogenous ligand, N/OFQ, are widely distributed in the brain and are implicated in many physiological functions including pain regulation. [(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-102) is a newly developed peptide agonist of NOP receptors. In this study, we quantitatively investigated the effect of UFP-102 at native NOP receptors of the ventrolateral periaqueductal gray (PAG), a crucial midbrain area involved in pain regulation and enriched with NOP receptors, using blind patch-clamp whole-cell recording technique in rat brain slices. UFP-102, like N/OFQ, induced an outward current in ventrolateral PAG neurons and increased the membrane current elicited by a hyperpolarization ramp from -60 to -140 mV. The current induced by UFP-102 was characterized with inward rectification and had a reversal potential near the equilibrium potential of K(+) ions, indicating that UFP-102 activates G-protein coupled inwardly rectifying K(+) channels. The effect of UFP-102 was concentration-dependent with the maximal effect similar to that of N/OFQ. The EC(50) value was 11+/-2 nM, which is 5 fold lower than that of N/OFQ. The effect of UFP-102 was not affected by naloxone while competitively antagonized by UFP-101 ([Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2)), a potent NOP receptor antagonist, with a pA(2) value of 6.7. These results suggest that UFP-102 is a full agonist at the postsynaptic NOP receptors of the midbrain of rats and is 5 fold more potent than N/OFQ.

The nociceptin receptor antagonist [Nphe1,Arg14,Lys15]nociceptin/orphanin FQ-NH2 blocks the stimulatory effects of nociceptin/orphanin FQ on the HPA axis in rats.[Pubmed: 16784820]

Nociceptin/orphanin FQ (N/OFQ) is an opioid-related peptide that stimulates corticosterone release after i.c.v. administration in non-stressed rats. We employed in situ hybridization histochemistry to investigate N/OFQ-stimulated activation of the HPA axis at the hypothalamic and pituitary level. We have demonstrated that N/OFQ-induced activation of the HPA axis is mediated via the central N/OFQ peptide receptor (NOP) using the recently described selective NOP antagonist [Nphe(1),Arg(14),Lys(15)]nociceptin/orphanin FQ-NH(2) (UFP-101). We found that, at 30 min post-i.c.v. injection, N/OFQ dose-dependently increased plasma adrenocorticotrophin hormone and corticosterone compared with the vehicle-injected controls. N/OFQ (1.0 microg) significantly increased CRF mRNA but not AVP mRNA within the parvocellular hypothalamic paraventricular nucleus compared with the control group, and significantly increased pro-opiomelanocortin (POMC) mRNA in the anterior pituitary. While UFP-101 (1.0 microg) alone had no significant effect on plasma corticosterone concentration it blocked the effect of N/OFQ (1.0 microg) on plasma corticosterone levels when compared with N/OFQ administered alone. UFP-101 also blocked the N/OFQ-induced increase in CRF mRNA and POMC mRNA. These results demonstrate that centrally administered N/OFQ activates the HPA axis via up-regulation of CRF and POMC mRNA and stimulation of corticosterone release in rats. Further, we have demonstrated for the first time that the selective NOP receptor antagonist UFP-101 blocks these effects indicating that N/OFQ-induced HPA axis activation is mediated via central NOP receptors.

Novel potent agonist [(pF)Phe4,Aib7,Aib11,Arg14,Lys15]N/OFQ-NH2 and antagonist [Nphe1,(pF)Phe4,Aib7,Aib11,Arg14,Lys15]N/OFQ-NH2 of nociceptin/orphanin FQ receptor.[Pubmed: 16516988]

Two novel ligands for the nociceptin/orphanin FQ (N/OFQ) receptor (NOP), [(pF)Phe4,Aib7, Aib11,Arg14,Lys15]N/OFQ-NH2 (peptide-1) and [Nphe1,(pF)Phe4,Aib7,Aib11,Arg14,Lys15]N/OFQ-NH2 (peptide-2), have been generated by combining different modifications of N/OFQ sequence. In the present study, we investigated the actions of two analogues and compared them with those of N/OFQ in four assays. Peptide-1 mimicked N/OFQ effects in mouse vas deferens and mouse colon and showed similar maximal effects but higher potency relative to N/OFQ. The effects of peptide-1 were sensitive to NOP receptor selective antagonist ([Nphe1]N/OFQ(1-13)-NH2) but not to naloxone in vitro. Peptide-1 (25 pmol, i.c.v.) mimicked the pronociceptive action of N/OFQ (2.5 nmol, i.c.v.) in mouse tail withdrawal assay, displaying higher potency and longer lasting effects. In anesthetized rats, peptide-1 (1 nmol/kg, i.v.) produced a marked decrease in mean arterial pressure, which was comparable to that evoked by i.v. N/OFQ (100 nmol/kg). Peptide-2 did not produce any effect per se but antagonized N/OFQ actions in mouse vas deferens and mouse colon assays. Peptide-2 is active in vivo where it prevented the pronociceptive effect induced by 2.5 nmol N/OFQ i.c.v. in the mouse tail withdrawal assay. Furthermore, peptide-2 at 5 nmol produced alone a robust and long lasting antinociceptive effect. Moreover, peptide-2 (10 and 40 nmol/kg i.v.) didn't produce any effect per se but antagonized hypotensive actions produced by i.v. administration of N/OFQ. Collectively, these findings demonstrate that [(pF)Phe4,Aib7,Aib11, Arg14,Lys15]N/OFQ-NH2 behaves as a highly potent NOP receptor agonist which produces long lasting effects in vivo and [Nphe1,(pF)Phe4,Aib7,Aib11,Arg14,Lys15]N/OFQ-NH2 acts as a pure and competitive antagonist of the NOP receptor.

The effects of [Arg14, Lys15] nociceptin/orphanin FQ, a highly potent agonist of the NOP receptor, on in vitro and in vivo gastrointestinal functions.[Pubmed: 16112397]

Nociceptin/orphanin FQ (N/OFQ) administered into the lateral left cerebral ventricle of rats has been reported to inhibit in vivo gut motor and secretory functions. Recently, a novel N/OFQ analog, [Arg14, Lys15] N/OFQ, was synthesized and demonstrated to behave as a highly potent agonist at the human recombinant N/OFQ peptide (NOP) receptors and to produce long-lasting effects in vivo in mice compared with the natural ligand N/OFQ. In the present study, the pharmacological profile of [Arg14, Lys15] N/OFQ was further evaluated and compared with that of N/OFQ in vitro on guinea pig exocrine pancreas and in vivo on gastric emptying, colonic propulsion and gastric acid secretion in rats. [Arg14, Lys15] N/OFQ and N/OFQ significantly decreased the KCl-evoked amylase secretion from isolated pancreatic lobules of the guinea pig. In in vivo experiments, [Arg14, Lys15] N/OFQ mimicked the effects of N/OFQ, inducing, after intracerebroventricular injection, a delay (up to 70%) in the gastric emptying of a phenol red meal, an increase (about 40 times) of the mean bead colonic expulsion time and a decrease (up to 90%) of gastric acid secretion in water loaded rats after 90 min pylorus ligature. In all these assays, [Arg14, Lys15] N/OFQ was more effective than N/OFQ, and its effective doses were at least 10-fold lower than N/OFQ effective doses. The highly selective NOP receptor antagonist, UFP-101, decreased the efficacy of [Arg14, Lys15] N/OFQ in in vitro and in vivo assays above reported. These findings: (a) show that pancreatic NOP receptors mediate an in vitro inhibitory effect on stimulated guinea pig amylase secretion; (b) confirm that the stimulation of central NOP receptors exerts an inhibitory control on gastric emptying, colonic motility and gastric secretion in rats and (c) put in evidence that [Arg14, Lys15] N/OFQ, being more potent and effective than the natural ligand N/OFQ, represents a new pharmacological tool for the study of the physiological and pharmacological roles mediated by the N/OFQ-NOP receptor system.


[Arg14,Lys15]Nociceptin,236098-40-1,GPCR/G protein,NOP Receptor, supplier, inhibitor,Antagonist,Blocker,Modulator,Agonist, activators, activates, potent, BioCrick

Online Inquiry

Fill out the information below

* Required Fields